Add libraries dir

This commit is contained in:
Mirivlad 2022-03-12 03:50:28 +08:00
parent 816f0bb3a5
commit 7572125fcb
256 changed files with 41193 additions and 0 deletions

View File

@ -0,0 +1,121 @@
Creative Commons Legal Code
CC0 1.0 Universal
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
HEREUNDER.
Statement of Purpose
The laws of most jurisdictions throughout the world automatically confer
exclusive Copyright and Related Rights (defined below) upon the creator
and subsequent owner(s) (each and all, an "owner") of an original work of
authorship and/or a database (each, a "Work").
Certain owners wish to permanently relinquish those rights to a Work for
the purpose of contributing to a commons of creative, cultural and
scientific works ("Commons") that the public can reliably and without fear
of later claims of infringement build upon, modify, incorporate in other
works, reuse and redistribute as freely as possible in any form whatsoever
and for any purposes, including without limitation commercial purposes.
These owners may contribute to the Commons to promote the ideal of a free
culture and the further production of creative, cultural and scientific
works, or to gain reputation or greater distribution for their Work in
part through the use and efforts of others.
For these and/or other purposes and motivations, and without any
expectation of additional consideration or compensation, the person
associating CC0 with a Work (the "Affirmer"), to the extent that he or she
is an owner of Copyright and Related Rights in the Work, voluntarily
elects to apply CC0 to the Work and publicly distribute the Work under its
terms, with knowledge of his or her Copyright and Related Rights in the
Work and the meaning and intended legal effect of CC0 on those rights.
1. Copyright and Related Rights. A Work made available under CC0 may be
protected by copyright and related or neighboring rights ("Copyright and
Related Rights"). Copyright and Related Rights include, but are not
limited to, the following:
i. the right to reproduce, adapt, distribute, perform, display,
communicate, and translate a Work;
ii. moral rights retained by the original author(s) and/or performer(s);
iii. publicity and privacy rights pertaining to a person's image or
likeness depicted in a Work;
iv. rights protecting against unfair competition in regards to a Work,
subject to the limitations in paragraph 4(a), below;
v. rights protecting the extraction, dissemination, use and reuse of data
in a Work;
vi. database rights (such as those arising under Directive 96/9/EC of the
European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, and under any national implementation
thereof, including any amended or successor version of such
directive); and
vii. other similar, equivalent or corresponding rights throughout the
world based on applicable law or treaty, and any national
implementations thereof.
2. Waiver. To the greatest extent permitted by, but not in contravention
of, applicable law, Affirmer hereby overtly, fully, permanently,
irrevocably and unconditionally waives, abandons, and surrenders all of
Affirmer's Copyright and Related Rights and associated claims and causes
of action, whether now known or unknown (including existing as well as
future claims and causes of action), in the Work (i) in all territories
worldwide, (ii) for the maximum duration provided by applicable law or
treaty (including future time extensions), (iii) in any current or future
medium and for any number of copies, and (iv) for any purpose whatsoever,
including without limitation commercial, advertising or promotional
purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
member of the public at large and to the detriment of Affirmer's heirs and
successors, fully intending that such Waiver shall not be subject to
revocation, rescission, cancellation, termination, or any other legal or
equitable action to disrupt the quiet enjoyment of the Work by the public
as contemplated by Affirmer's express Statement of Purpose.
3. Public License Fallback. Should any part of the Waiver for any reason
be judged legally invalid or ineffective under applicable law, then the
Waiver shall be preserved to the maximum extent permitted taking into
account Affirmer's express Statement of Purpose. In addition, to the
extent the Waiver is so judged Affirmer hereby grants to each affected
person a royalty-free, non transferable, non sublicensable, non exclusive,
irrevocable and unconditional license to exercise Affirmer's Copyright and
Related Rights in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future
time extensions), (iii) in any current or future medium and for any number
of copies, and (iv) for any purpose whatsoever, including without
limitation commercial, advertising or promotional purposes (the
"License"). The License shall be deemed effective as of the date CC0 was
applied by Affirmer to the Work. Should any part of the License for any
reason be judged legally invalid or ineffective under applicable law, such
partial invalidity or ineffectiveness shall not invalidate the remainder
of the License, and in such case Affirmer hereby affirms that he or she
will not (i) exercise any of his or her remaining Copyright and Related
Rights in the Work or (ii) assert any associated claims and causes of
action with respect to the Work, in either case contrary to Affirmer's
express Statement of Purpose.
4. Limitations and Disclaimers.
a. No trademark or patent rights held by Affirmer are waived, abandoned,
surrendered, licensed or otherwise affected by this document.
b. Affirmer offers the Work as-is and makes no representations or
warranties of any kind concerning the Work, express, implied,
statutory or otherwise, including without limitation warranties of
title, merchantability, fitness for a particular purpose, non
infringement, or the absence of latent or other defects, accuracy, or
the present or absence of errors, whether or not discoverable, all to
the greatest extent permissible under applicable law.
c. Affirmer disclaims responsibility for clearing rights of other persons
that may apply to the Work or any use thereof, including without
limitation any person's Copyright and Related Rights in the Work.
Further, Affirmer disclaims responsibility for obtaining any necessary
consents, permissions or other rights required for any use of the
Work.
d. Affirmer understands and acknowledges that Creative Commons is not a
party to this document and has no duty or obligation with respect to
this CC0 or use of the Work.

View File

@ -0,0 +1,8 @@
# Arduino_BuiltIn library for Arduino
[![Check Arduino status](https://github.com/arduino-libraries/Arduino_BuiltIn/actions/workflows/check-arduino.yml/badge.svg)](https://github.com/arduino-libraries/Arduino_BuiltIn/actions/workflows/check-arduino.yml)
[![Spell Check status](https://github.com/arduino-libraries/Arduino_BuiltIn/actions/workflows/spell-check.yml/badge.svg)](https://github.com/arduino-libraries/Arduino_BuiltIn/actions/workflows/spell-check.yml)
Shell Arduino library to provide the standard built-in libraries.
The sole purpose of this library is to install the standard Arduino libraries which are typically included with the Arduino IDE. This is accomplished by defining the built-in libraries as dependencies in [the library.properties metadata file](https://arduino.github.io/arduino-cli/latest/library-specification/#library-metadata).

View File

@ -0,0 +1,10 @@
name=Arduino_BuiltIn
version=1.0.0
author=Arduino
maintainer=Arduino <info@arduino.cc>
sentence=Shell Arduino library to provide the standard built-in libraries
paragraph=The sole purpose of this library is to install the standard Arduino libraries which are typically included with the Arduino IDE.
category=Other
url=https://github.com/arduino-libraries/Arduino_BuiltIn
architectures=*
depends=Ethernet,Firmata,Keyboard,LiquidCrystal,Mouse,SD,Servo,Stepper,TFT

View File

@ -0,0 +1,2 @@
// This file intentionally left empty.
// It serves only to make this shell library fully valid.

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2021 Alex
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,539 @@
[![Foo](https://img.shields.io/badge/Version-1.20-brightgreen.svg?style=flat-square)](#versions)
[![Foo](https://img.shields.io/badge/Website-AlexGyver.ru-blue.svg?style=flat-square)](https://alexgyver.ru/)
[![Foo](https://img.shields.io/badge/%E2%82%BD$%E2%82%AC%20%D0%9D%D0%B0%20%D0%BF%D0%B8%D0%B2%D0%BE-%D1%81%20%D1%80%D1%8B%D0%B1%D0%BA%D0%BE%D0%B9-orange.svg?style=flat-square)](https://alexgyver.ru/support_alex/)
# EncButton
Ультра лёгкая и быстрая библиотека для энкодера, энкодера с кнопкой или просто кнопки
- Максимально быстрое чтение пинов для AVR (ATmega328/ATmega168, ATtiny85/ATtiny13)
- Максимально лёгкий вес
- Быстрые и лёгкие алгоритмы опроса кнопки и энкодера
- Энкодер: обычный поворот, нажатый поворот, быстрый поворот, доступ к счётчику
- Кнопка: антидребезг, клик, несколько кликов, счётчик кликов, удержание, режим импульсного удержания
- Подключение - **только с подтяжкой к питанию** (внешней или внутренней)!
- Опциональный режим с обработчиками callback (+24 байта SRAM на каждый экземпляр)
- Виртуальный режим (кнопка, энк, энк с кнопкой)
### Совместимость
Совместима со всеми Arduino платформами (используются Arduino-функции)
## Содержание
- [Установка](#install)
- [Железо](#hardware)
- [Инициализация](#init)
- [Использование](#usage)
- [Пример](#example)
- [Версии](#versions)
- [Баги и обратная связь](#feedback)
<a id="install"></a>
## Установка
- Библиотеку можно найти по названию **EncButton** и установить через менеджер библиотек в:
- Arduino IDE
- Arduino IDE v2
- PlatformIO
- [Скачать библиотеку](https://github.com/GyverLibs/EncButton/archive/refs/heads/main.zip) .zip архивом для ручной установки:
- Распаковать и положить в *C:\Program Files (x86)\Arduino\libraries* (Windows x64)
- Распаковать и положить в *C:\Program Files\Arduino\libraries* (Windows x32)
- Распаковать и положить в *Документы/Arduino/libraries/*
- (Arduino IDE) автоматическая установка из .zip: *Скетч/Подключить библиотеку/Добавить .ZIP библиотеку…* и указать скачанный архив
- Читай более подробную инструкцию по установке библиотек [здесь](https://alexgyver.ru/arduino-first/#%D0%A3%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B0_%D0%B1%D0%B8%D0%B1%D0%BB%D0%B8%D0%BE%D1%82%D0%B5%D0%BA)
<a id="hardware"></a>
## Железо
Для работы по сценарию "энкодер с кнопкой" рекомендую вот такие ([ссылка](https://ali.ski/CYir4), [ссылка](https://ali.ski/49q5hy)) круглые китайские модули с распаянными цепями антидребезга:
![scheme](/doc/encAli.png)
Самостоятельно обвязать энкодер можно по следующей схеме (RC фильтры на каналы энкодера + подтяжка всех пинов к VCC):
![scheme](/doc/enc.png)
## Производительность
Время холостого выполнения функции tick() при реальном устройстве (кнопка/энкодер подключены к пинам МК) на ATmega328, библиотека EncButton:
| Режим | Время, мкс |
| ----- | ---------- |
| Энкодер + кнопка | 3.8 |
| Энкодер | 2.4 |
| Кнопка | 1.9 |
*Для сравнения, стандартный digitalRead() на AVR выполняется 3.5 us*
## Сравнение с аналогами
- EncButton в режиме кнопки на 6 мкс быстрее, на ~450 байт Flash и 12 байт SRAM легче моей старой библиотеки [GyverButton](https://github.com/GyverLibs/GyverButton), имея при этом больше возможностей
- EncButton в режиме энкодера с кнопкой на 6 мкс быстрее, на ~400 байт Flash и 18 байт SRAM легче моей старой библиотеки [GyverEncoder](https://github.com/GyverLibs/GyverEncoder), имея при этом больше возможностей
<a id="init"></a>
## Инициализация
**Если нужен массив кнопок/энкодеров, используй EncButton2!**
<details>
<summary>Инициализация EncButton</summary>
```cpp
// ============== БАЗОВАЯ =============
EncButton<MODE, A, B, KEY> enc; // энкодер с кнопкой
EncButton<MODE, A, B> enc; // просто энкодер
EncButton<MODE, KEY> btn; // просто кнопка
// A, B, KEY: номера пинов
// MODE: EB_TICK или EB_CALLBACK - режим работы ручной или с обработчиками
// для изменения направления энкодера поменяй A и B при инициализации
// ============ ПОДКЛЮЧЕНИЕ ============
// По умолчанию пины настраиваются в INPUT_PULLUP
// Если используется внешняя подтяжка - лучше перевести в INPUT
EncButton<...> enc(INPUT);
// ========= ВИРТУАЛЬНЫЙ РЕЖИМ =========
EncButton<MODE, VIRT_BTN> enc; // виртуальная кнопка
EncButton<MODE, VIRT_ENCBTN> enc; // виртуальный энк с кнопкой
EncButton<MODE, VIRT_ENC> enc; // виртуальный энк
// в tick нужно будет передавать виртуальное значение, см. пример
```
</details>
<details>
<summary>Инициализация EncButton2</summary>
Хранит пины НЕ в шаблоне, а как член класса. Всё кроме инициализации такое же как у EncButton!
```cpp
// ================ TICK ===============
EncButton2<EB_ENCBTN> enc(INPUT, A, B, KEY); // энкодер с кнопкой
EncButton2<EB_ENC> enc(INPUT, A, B); // просто энкодер
EncButton2<EB_BTN> enc(INPUT, KEY); // просто кнопка
// режим пинов INPUT/INPUT_PULLUP
// ============== CALLBACK =============
EncButton2<EB_ENCBTN, EB_CALLBACK> enc(INPUT, A, B, KEY); // энкодер с кнопкой
EncButton2<EB_ENC, EB_CALLBACK> enc(INPUT, A, B); // просто энкодер
EncButton2<EB_BTN, EB_CALLBACK> enc(INPUT, KEY); // просто кнопка
// режим пинов INPUT/INPUT_PULLUP
// ============== VIRT TICK ============
EncButton2<VIRT_ENCBTN> enc; // энкодер с кнопкой
EncButton2<VIRT_ENC> enc; // просто энкодер
EncButton2<VIRT_BTN> enc; // просто кнопка
// ============ VIRT CALLBACK ==========
EncButton2<VIRT_ENCBTN, EB_CALLBACK> enc; // энкодер с кнопкой
EncButton2<VIRT_ENC, EB_CALLBACK> enc; // просто энкодер
EncButton2<VIRT_BTN, EB_CALLBACK> enc; // просто кнопка
```
</details>
<details>
<summary>Массив экземпляров EncButton2</summary>
```cpp
EncButton2<EB_ENCBTN> enc[количество];
EncButton2<EB_ENC> enc[количество];
EncButton2<EB_BTN> enc[количество];
EncButton2<EB_ENCBTN, EB_CALLBACK> enc[количество];
EncButton2<EB_ENC, EB_CALLBACK> enc[количество];
EncButton2<EB_BTN, EB_CALLBACK> enc[количество];
// и так далее
// Задавать пины можно через setPins()
setPins(uint8_t mode, uint8_t P1, uint8_t P2, uint8_t P3);
// mode - INPUT/INPUT_PULLUP (для всех пинов)
// указываем только нужные для выбранного режима пины:
// EB_ENCBTN - A, B, KEY
// EB_ENC - A, B
// EB_BTN - KEY
// см. пример EucButton2_array
```
</details>
## Документация
<details>
<summary>ПОЛНОЕ ОПИСАНИЕ КЛАССА</summary>
```cpp
// =============== SETTINGS ==============
void pullUp(); // подтянуть все пины внутренней подтяжкой
void holdEncButton(bool state); // виртуально зажать кнопку энкодера
void setHoldTimeout(int tout); // установить время удержания кнопки, мс (до 30 000)
void setButtonLevel(bool level); // уровень кнопки: LOW - кнопка подключает GND (по умолч.), HIGH - кнопка подключает VCC
// ================= TICK ================
// тикер, вызывать как можно чаще или в прерывании
// вернёт отличное от нуля значение, если произошло какое то событие (см. пример optimisation)
uint8_t tick();
// tick(uint8_t s1 = 0, uint8_t s2 = 0, uint8_t key = 0)
// может принимать виртуальный сигнал при режиме VIRT_xxx:
// (сигнал кнопки)
// (сигнал энкодера А, сигнал энкодера B)
// (сигнал энкодера А, сигнал энкодера B, сигнал кнопки)
// Тикер для прерывания в режиме callback. Не вызывает подключенные функции!
// Требует наличие обычного tick() в loop() (см. примеры tickISR и callbackISR)
uint8_t tickISR();
// проверяет и вызывает подключенные функции для режима callback
// Встроено в tick(), но вынесено отдельной функцией для нестандартных сценариев работы
void checkCallback();
// =============== STATUS ================
uint8_t getState(); // получить статус кнопки/энкодера
void resetState(); // сбросить статус
// =============== ENCODER ===============
bool turn(); // поворот на один щелчок в любую сторону
bool turnH(); // поворот на один щелчок в любую сторону с зажатой кнопкой
bool fast(); // быстрый поворот на один щелчок в любую сторону
bool right(); // поворот на один щелчок направо
bool left(); // поворот на один щелчок налево
bool rightH(); // поворот на один щелчок направо с зажатой кнопкой
bool leftH(); // поворот на один щелчок налево с зажатой кнопкой
int8_t getDir(); // направление последнего поворота, 1 или -1
int counter; // доступ к счётчику энкодера
// ================ BUTTON ================
bool busy(); // вернёт true, если всё ещё нужно вызывать tick для опроса таймаутов
bool state(); // текущее состояние кнопки (true нажата, false не нажата)
bool press(); // кнопка была нажата [однократное срабатывание]
bool release(); // кнопка была отпущена [однократное срабатывание]
bool click(); // клик (нажата и отпущена) [однократное срабатывание]
bool held(); // кнопка была удержана [однократное срабатывание]
bool hold(); // кнопка удерживается [постоянное срабатывание]
bool step(); // режим импульсного удержания
bool step(uint8_t clicks); // режим импульсного удержания с предварительным накликиванием
bool releaseStep(); // отпущена после режима step
bool releaseStep(uint8_t clicks); // отпущена после режима step с предварительным накликиванием
uint8_t clicks; // доступ к счётчику кликов
uint8_t hasClicks(); // вернёт количество кликов, если они есть
bool hasClicks(uint8_t num); // проверка на наличие указанного количества кликов
// =============== CALLBACK ===============
void attach(eb_callback type, void (*handler)()); // подключить обработчик
void detach(eb_callback type); // отключить обработчик
void attachClicks(uint8_t amount, void (*handler)()); // подключить обработчик на количество кликов (может быть только один!)
void detachClicks(); // отключить обработчик на количество кликов
// eb_callback может быть:
TURN_HANDLER
TURN_H_HANDLER
RIGHT_HANDLER
LEFT_HANDLER
RIGHT_H_HANDLER
LEFT_H_HANDLER
CLICK_HANDLER
HOLDED_HANDLER
STEP_HANDLER
HOLD_HANDLER
CLICKS_HANDLER
PRESS_HANDLER
RELEASE_HANDLER
```
**Дополнительно у EncButton2**
```cpp
void pullUp(); // здесь не реализована!
void setPins(uint8_t mode, uint8_t P1, uint8_t P2, uint8_t P3); // настроить пины
// mode - INPUT/INPUT_PULLUP (для всех пинов)
// указываем только нужные для выбранного режима пины:
// EB_ENCBTN - (A, B, KEY)
// EB_ENC - (A, B)
// EB_BTN - (KEY)
// см. пример EucButton2_array
```
</details>
### Заметки
- Библиотека универсальная, но сделана с упором на максимальную оптимизацию памяти при работе во всех режимах внутри одного класса, поэтому используется шаблон и дефайны
- При создании объекта с разным количеством пинов (энкодер, кнопка, энкодер с кнопкой) библиотека будет компилироваться по разному, ненужный код будет вырезан. Это позволяет экономить Flash память.
- То же самое касается режимов работы TICK/CALLBACK, при использовании TICK весь относящийся к CALLBACK код вырезается компилятором
- Два алгоритма опроса энкодера, обычный и точный. Точный использует на 16 байт больше SRAM памяти (на всю библиотеку), но позволяет работать даже с низкокачественными и убитыми энкодерами
- Точный алгоритм активируется добавлением `#define EB_BETTER_ENC` перед подключением библиотеки
- Версия библиотеки *EncButton2.h* хранит номера пинов в классе. Используйте эту версию для создания массива объектов EncButton!
<a id="usage"></a>
## Особенности и сценарии использования
### Дефайны настроек
```cpp
// дефайнить ПЕРЕД ПОДКЛЮЧЕНИЕМ БИБЛИОТЕКИ, показаны значения по умолчанию (если они есть)
// энкодер
#define EB_FAST 30 // таймаут быстрого поворота, мс
#define EB_BETTER_ENC // улучшенный алгоритм опроса энкодера. Добавит 16 байт SRAM при подключении библиотеки
#define EB_HALFSTEP_ENC // режим опроса полушагового энкодера (включи, если твой энкодер делает два тика за один)
// кнопка
#define EB_DEB 50 // дебаунс кнопки, мс
#define EB_STEP 500 // период срабатывания степ, мс
#define EB_CLICK 400 // таймаут накликивания, мс
#define EB_HOLD 1000 // таймаут удержания кнопки (можно переназначить setHoldTimeout() из программы), мс
```
### Режим tick
- Опрос пинов энкодера/кнопки и расчёт таймаутов осуществляется внутри функции `tick()`. Эту функцию нужно однократно вызывать в основном цикле программы.
- Для повышения качества обработки энкодера/кнопки в загруженной программе (чтобы не пропустить поворот или клик) рекомендуется продублировать опрос в прерывании по *CHANGE*: внутри обработчика прерывания вызываем специальный тикер `tickISR()`, и в основном цикле программы оставляем обычный `tick()`. Он нужен для того, чтобы корректно считались все таймауты.
- `tick()` возвращает текущий статус энкодера/кнопки:
- 0 - никаких действий не было
- 1 - left + turn
- 2 - right + turn
- 3 - leftH + turnH
- 4 - rightH + turnH
- 5 - click
- 6 - held
- 7 - step
- 8 - press
Это позволяет например производить дальнейший опрос действий кнопки/энкодера только по факту их совершения: можно поместить весь опрос в блок `if (enc.tick()) {}`. В конце рекомендуется вызвать `resetState()` для сборса неопрошенных флагов, чтобы `tick()` перестал "сигналить" о действии. Подробнее смотри в примере *optimisation*.
- Основная идея работы: "тикнули", а затем вручную через условия опрашиваем нужные действия кнопки/энкодера. Почти все функции опроса имеют механизм "однократного срабатывания", то есть возвращают `true` и автоматически сбрасываются в `false` до наступления следующего события. Таким образом конструкция `if (btn.click())` позволяет выполнить какой-то блок кода однократно по клику. Подробнее разберём ниже.
#### Кнопка
- `press()` - кнопка была нажата. *[однократно вернёт true]*
- `release()` - кнопка была отпущена. *[однократно вернёт true]*
- `click()` - кнопка была кликнута, т.е. нажата и отпущена до таймаута удержания. *[однократно вернёт true]*
- `held()` - кнопка была удержана дольше таймаута удержания. *[однократно вернёт true]*
- `held(clicks)` - то же самое, но функция принимает количество кликов, сделанных до удержания. Примечание: held() без аргумента перехватит вызов! См. пример *preClicks*. *[однократно вернёт true]*
- `hold()` - кнопка была удержана дольше таймаута удержания. *[возвращает true, пока удерживается]*
- `hold(clicks)` - то же самое, но функция принимает количество кликов, сделанных до удержания. Примечание: hold() без аргумента перехватит вызов! См. пример *preClicks*. *[возвращает true, пока удерживается]*
- `step()` - режим "импульсного удержания": после удержания кнопки дольше таймаута данная функция *[возвращает true с периодом EB_STEP]*. Удобно использовать для пошагового изменения переменных: `if (btn.step()) val++;`.
- `step(clicks)` - то же самое, но функция принимает количество кликов, сделанных до удержания. Примечание: step() без аргумента перехватит вызов! См. пример *StepMode* и *preClicks*.
- `releaseStep()` - кнопка была отпущена после импульсного удержания. Может использоваться для изменения знака инкремента переменной. См. пример *StepMode*. *[однократно вернёт true]*
- `releaseStep(clicks)` - то же самое, но функция принимает количество кликов, сделанных до удержания. Примечание: releaseStep() без аргумента перехватит вызов! См. пример *StepMode* и *preClicks*. *[однократно вернёт true]*
- `hasClicks(clicks)` - было сделано указанное количество кликов с периодом менее *EB_CLICK*. *[однократно вернёт true]*
- `state()` - возвращает теукщее состояние кнопки (сигнал с пина, без антидребезга): `true` - нажата, `false` - не нажата.
- `busy()` - вернёт `true`, если всё ещё нужно вызывать tick для опроса таймаутов
- `hasClicks()` - вернёт количество кликов, сделанных с периодом менее *EB_CLICK*. В противном случае вернёт 0.
- `uint8_t clicks` - публичная переменная (член класса), хранит количество сделанных кликов с периодом менее *EB_CLICK*. Сбрасывается в 0 после нового клика.
![diagram](/doc/diagram.png)
#### Энкодер
- `turn()` - поворот на один щелчок в любую сторону. *[однократно вернёт true]*
- `turnH()` - поворот на один щелчок в любую сторону с зажатой кнопкой. *[однократно вернёт true]*
- `fast()` - был совершён быстрый поворот (с периодом менее *EB_FAST* мс) на один щелчок в любую сторону. *[возвращает true, пока энкодер крутится быстро]*
- `right()` - поворот на один щелчок направо. *[однократно вернёт true]*
- `left()` - поворот на один щелчок налево. *[однократно вернёт true]*
- `rightH()` - поворот на один щелчок направо с зажатой кнопкой. *[однократно вернёт true]*
- `leftH()` - поворот на один щелчок налево с зажатой кнопкой. *[однократно вернёт true]*
- `getDir()` - направление последнего поворота, 1 или -1.
- `int16_t counter` - публичная переменная (член класса), хранит счётчик энкодера.
### Режим callback
- В данном режиме можно подключить свою функцию-обработчик на любое действие кнопки/энкодера. Они будут автоматически вызываться при наступлении события.
- Для работы нужно вызывать `tick()` в основном цикле программы, а также можно продублировать `tickISR()` в прерывании по *CHANGE* для улучшения точности обработки энкодера.
- При работе в прерывании подключенные функции вызываются из `tick()`, т.е. из основного цикла программы. В `tickISR()` происходит только обработка алгоритмов библиотеки!
- Смотри пример *callbackMode*
```cpp
void attach(type, func); // подключить обработчик
void detach(type); // отключить обработчик
void attachClicks(uint8_t amount, func); // подключить обработчик на количество кликов (может быть только один!)
void detachClicks(); // отключить обработчик на количество кликов
```
Где `type` - тип события:
- *TURN_HANDLER* - поворот
- *TURN_H_HANDLER* - нажатый поворот
- *RIGHT_HANDLER* - поворот направо
- *LEFT_HANDLER* - поворот налево
- *RIGHT_H_HANDLER* - нажатый поворот направо
- *LEFT_H_HANDLER* - нажатый поворот налево
- *PRESS_HANDLER* - нажатие
- *RELEASE_HANDLER* - отпускание
- *CLICK_HANDLER* - клик
- *HOLDED_HANDLER* - удержание (однократное срабатывание)
- *HOLD_HANDLER* - удержание (постоянное срабатывание)
- *STEP_HANDLER* - импульсное удержание
- *CLICKS_HANDLER* - несколько кликов
### Виртуальный режим
Виртуальный режим позволяет получить все возможности библиотеки EncButton в ситуациях, когда кнопка не подключена напрямую к микроконтроллеру, либо для её опроса используется другая библиотека:
- Аналоговая клавиатура (например через библиотеку [AnalogKey](https://github.com/GyverLibs/AnalogKey)). Смотри пример *virtual_AnalogKey*
- Матричная клавиатура (например через библиотеку [SimpleKeypad](https://github.com/maximebohrer/SimpleKeypad)). Смотри пример *virtual_SimpleKeypad* и *virtual_SimpleKeypad_array*
- Кнопки или энкодеры, подключенные через расширители пинов или сдвиговые регистры
Таким образом можно получить несколько нажатий с матричной клавиатуры, удержание кнопок матричной клавиатуры, импульсное удержание и прочие фишки EncButton.
Для работы нужно передать в `tick()` текущие состояния "пинов" кнопки/энкодера: `tick(s1, s2, s3)` в следующем порядке
- Кнопка - (сигнал кнопки)
- Энкодер - (сигнал энкодера А, сигнал энкодера B)
- Энкодер с кнопкой - (сигнал энкодера А, сигнал энкодера B, сигнал кнопки)
### Настройки
```cpp
void pullUp(); // подтянуть все пины внутренней подтяжкой
void holdEncButton(bool state); // виртуально зажать кнопку энкодера
void setHoldTimeout(int tout); // установить время удержания кнопки, мс (до 30 000)
void setButtonLevel(bool level); // уровень кнопки: LOW - кнопка подключает GND (по умолч.), HIGH - кнопка подключает VCC
```
<a id="example"></a>
## Примеры
### Полное демо tick
Остальные примеры смотри в **examples**!
```cpp
// Пример с прямой работой библиотеки
#include <EncButton.h>
EncButton<EB_TICK, 2, 3, 4> enc; // энкодер с кнопкой <A, B, KEY>
//EncButton<EB_TICK, 2, 3> enc; // просто энкодер <A, B>
//EncButton<EB_TICK, 4> enc; // просто кнопка <KEY>
void setup() {
Serial.begin(9600);
// ещё настройки
//enc.counter = 100; // изменение счётчика энкодера
//enc.setHoldTimeout(500); // установка таймаута удержания кнопки
//enc.setButtonLevel(HIGH); // LOW - кнопка подключает GND (умолч.), HIGH - кнопка подключает VCC
}
void loop() {
enc.tick(); // опрос происходит здесь
// =============== ЭНКОДЕР ===============
// обычный поворот
if (enc.turn()) {
Serial.println("turn");
// можно опросить ещё:
//Serial.println(enc.counter); // вывести счётчик
//Serial.println(enc.fast()); // проверить быстрый поворот
Serial.println(enc.getDir()); // направление поворота
}
// "нажатый поворот"
if (enc.turnH()) {
Serial.println("hold + turn");
// можно опросить ещё:
//Serial.println(enc.counter); // вывести счётчик
//Serial.println(enc.fast()); // проверить быстрый поворот
Serial.println(enc.getDir()); // направление поворота
}
if (enc.left()) Serial.println("left"); // поворот налево
if (enc.right()) Serial.println("right"); // поворот направо
if (enc.leftH()) Serial.println("leftH"); // нажатый поворот налево
if (enc.rightH()) Serial.println("rightH"); // нажатый поворот направо
// =============== КНОПКА ===============
if (enc.press()) Serial.println("press");
if (enc.click()) Serial.println("click");
if (enc.release()) Serial.println("release");
if (enc.held()) Serial.println("held"); // однократно вернёт true при удержании
//if (enc.hold()) Serial.println("hold"); // будет постоянно возвращать true после удержания
if (enc.step()) Serial.println("step"); // импульсное удержание
if (enc.releaseStep()) Serial.println("release step"); // отпущена после импульсного удержания
// проверка на количество кликов
if (enc.hasClicks(1)) Serial.println("action 1 clicks");
if (enc.hasClicks(2)) Serial.println("action 2 clicks");
if (enc.hasClicks(3)) Serial.println("action 3 clicks");
if (enc.hasClicks(5)) Serial.println("action 5 clicks");
// вывести количество кликов
if (enc.hasClicks()) {
Serial.print("has clicks ");
Serial.println(enc.clicks);
}
}
```
### Массив кнопок EncButton2
```cpp
// объявляем массив кнопок
#define BTN_AMOUNT 5
#include <EncButton2.h>
EncButton2<EB_BTN> btn[BTN_AMOUNT];
void setup() {
Serial.begin(9600);
btn[0].setPins(INPUT_PULLUP, D3);
btn[1].setPins(INPUT_PULLUP, D2);
}
void loop() {
for (int i = 0; i < BTN_AMOUNT; i++) btn[i].tick();
for (int i = 0; i < BTN_AMOUNT; i++) {
if (btn[i].click()) {
Serial.print("click btn: ");
Serial.println(i);
}
}
}
```
### Одна кнопка управляет несколькими переменными
```cpp
// используем одну КНОПКУ для удобного изменения трёх переменных
// первая - один клик, затем удержание (нажал-отпустил-нажал-держим)
// вторая - два клика, затем удержание
// третья - три клика, затем удержание
// смотри монитор порта
#include <EncButton.h>
EncButton<EB_TICK, 3> btn;
// переменные для изменения
int val_a, val_b, val_c;
// шаги изменения (signed)
int8_t step_a = 1;
int8_t step_b = 5;
int8_t step_c = 10;
void setup() {
Serial.begin(9600);
}
void loop() {
btn.tick();
// передаём количество предварительных кликов
if (btn.step(1)) {
val_a += step_a;
Serial.print("val_a: ");
Serial.println(val_a);
}
if (btn.step(2)) {
val_b += step_b;
Serial.print("val_b: ");
Serial.println(val_b);
}
if (btn.step(3)) {
val_c += step_c;
Serial.print("val_c: ");
Serial.println(val_c);
}
// разворачиваем шаг для изменения в обратную сторону
// передаём количество предварительных кликов
if (btn.releaseStep(1)) step_a = -step_a;
if (btn.releaseStep(2)) step_b = -step_b;
if (btn.releaseStep(3)) step_c = -step_c;
}
```
<a id="versions"></a>
## Версии
- v1.1 - пуллап отдельныи методом
- v1.2 - можно передать конструктору параметр INPUT_PULLUP / INPUT(умолч)
- v1.3 - виртуальное зажатие кнопки энкодера вынесено в отдельную функцию + мелкие улучшения
- v1.4 - обработка нажатия и отпускания кнопки
- v1.5 - добавлен виртуальный режим
- v1.6 - оптимизация работы в прерывании
- v1.6.1 - подтяжка по умолчанию INPUT_PULLUP
- v1.7 - большая оптимизация памяти, переделан FastIO
- v1.8 - индивидуальная настройка таймаута удержания кнопки (была общая на всех)
- v1.8.1 - убран FastIO
- v1.9 - добавлена отдельная отработка нажатого поворота и запрос направления
- v1.10 - улучшил обработку released, облегчил вес в режиме callback и исправил баги
- v1.11 - ещё больше всякой оптимизации + настройка уровня кнопки
- v1.11.1 - совместимость Digispark
- v1.12 - добавил более точный алгоритм энкодера EB_BETTER_ENC
- v1.13 - добавлен экспериментальный EncButton2
- v1.14 - добавлена releaseStep(). Отпускание кнопки внесено в дебаунс
- v1.15 - добавлен setPins() для EncButton2
- v1.16 - добавлен режим EB_HALFSTEP_ENC для полушаговых энкодеров
- v1.17 - добавлен step с предварительными кликами
- v1.18 - не считаем клики после активации step. held() и hold() тоже могут принимать предварительные клики. Переделан и улучшен дебаунс
- v1.18.1 - исправлена ошибка в releaseStep() (не возвращала результат)
- v1.18.2 - fix compiler warnings
- v1.19 - оптимизация скорости, уменьшен вес в sram
- v1.19.1 - ещё чутка увеличена производительность
- v1.19.2 - ещё немного увеличена производительность, спасибо XRay3D
- v1.19.3 - сделал высокий уровень кнопки по умолчанию в виртуальном режиме
- v1.19.4 - фикс EncButton2
- v1.20 - исправлена критическая ошибка в EncButton2
<a id="feedback"></a>
## Баги и обратная связь
При нахождении багов создавайте **Issue**, а лучше сразу пишите на почту [alex@alexgyver.ru](mailto:alex@alexgyver.ru)
Библиотека открыта для доработки и ваших **Pull Request**'ов!

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

View File

@ -0,0 +1,77 @@
// пример с библиотекой EncButton2
// Опциональные дефайн-настройки (показаны по умолчанию)
//#define EB_FAST 30 // таймаут быстрого поворота, мс
//#define EB_DEB 50 // дебаунс кнопки, мс
//#define EB_HOLD 1000 // таймаут удержания кнопки, мс
//#define EB_STEP 500 // период срабатывания степ, мс
//#define EB_CLICK 400 // таймаут накликивания, мс
#include <EncButton2.h>
EncButton2<EB_ENCBTN> enc(INPUT, 2, 3, 4); // энкодер с кнопкой
//EncButton2<EB_ENC> enc(INPUT, 2, 3); // просто энкодер
//EncButton2<EB_BTN> enc(INPUT, 4); // просто кнопка
// для изменения направления энкодера поменяй A и B при инициализации
// по умолчанию пины настроены в INPUT_PULLUP
// Если используется внешняя подтяжка - лучше перевести в INPUT
//EncButton<EB_TICK, 2, 3, 4> enc(INPUT);
void setup() {
Serial.begin(9600);
// ещё настройки
//enc.counter = 100; // изменение счётчика энкодера
//enc.setHoldTimeout(500); // установка таймаута удержания кнопки
//enc.setButtonLevel(HIGH); // LOW - кнопка подключает GND (умолч.), HIGH - кнопка подключает VCC
}
void loop() {
enc.tick(); // опрос происходит здесь
// =============== ЭНКОДЕР ===============
// обычный поворот
if (enc.turn()) {
Serial.println("turn");
// можно опросить ещё:
//Serial.println(enc.counter); // вывести счётчик
//Serial.println(enc.fast()); // проверить быстрый поворот
Serial.println(enc.getDir()); // направление поворота
}
// "нажатый поворот"
if (enc.turnH()) {
Serial.println("hold + turn");
// можно опросить ещё:
//Serial.println(enc.counter); // вывести счётчик
//Serial.println(enc.fast()); // проверить быстрый поворот
Serial.println(enc.getDir()); // направление поворота
}
if (enc.left()) Serial.println("left"); // поворот налево
if (enc.right()) Serial.println("right"); // поворот направо
if (enc.leftH()) Serial.println("leftH"); // нажатый поворот налево
if (enc.rightH()) Serial.println("rightH"); // нажатый поворот направо
// =============== КНОПКА ===============
if (enc.press()) Serial.println("press");
if (enc.click()) Serial.println("click");
if (enc.release()) Serial.println("release");
if (enc.held()) Serial.println("held"); // однократно вернёт true при удержании
//if (enc.hold()) Serial.println("hold"); // будет постоянно возвращать true после удержания
if (enc.step()) Serial.println("step"); // импульсное удержание
// проверка на количество кликов
if (enc.hasClicks(1)) Serial.println("action 1 clicks");
if (enc.hasClicks(2)) Serial.println("action 2 clicks");
if (enc.hasClicks(3)) Serial.println("action 3 clicks");
if (enc.hasClicks(5)) Serial.println("action 5 clicks");
// вывести количество кликов
if (enc.hasClicks()) {
Serial.print("has clicks ");
Serial.println(enc.clicks);
}
}

View File

@ -0,0 +1,20 @@
// объявляем массив кнопок
#define BTN_AMOUNT 5
#include <EncButton2.h>
EncButton2<EB_BTN> btn[BTN_AMOUNT];
void setup() {
Serial.begin(9600);
btn[0].setPins(INPUT_PULLUP, D3);
btn[1].setPins(INPUT_PULLUP, D2);
}
void loop() {
for (int i = 0; i < BTN_AMOUNT; i++) btn[i].tick();
for (int i = 0; i < BTN_AMOUNT; i++) {
if (btn[i].click()) {
Serial.print("click btn: ");
Serial.println(i);
}
}
}

View File

@ -0,0 +1,29 @@
// Пример с обработчиками в прерывании
#include <EncButton.h>
EncButton<EB_CALLBACK, 2, 3, 4> enc; // энкодер с кнопкой <A, B, KEY>
void setup() {
Serial.begin(9600);
enc.attach(TURN_HANDLER, myTurn); // подключим поворот
// прерывание обеих фаз энкодера на функцию isr
attachInterrupt(0, isr, CHANGE);
attachInterrupt(1, isr, CHANGE);
}
void myTurn() {
Serial.print("TURN_HANDLER: ");
Serial.println(enc.counter);
}
void isr() {
enc.tickISR(); // тикер в прерывании
// Не вызывает подключенные коллбэки внутри прерывания!!!
}
void loop() {
enc.tick(); // дополнительный опрос таймаутов и коллбэков в loop
// вызов подключенных функций будет здесь,
// чтобы не грузить прерывание
}

View File

@ -0,0 +1,91 @@
// Пример с обработчиками
#include <EncButton.h>
EncButton<EB_CALLBACK, 2, 3, 4> enc; // энкодер с кнопкой <A, B, KEY>
//EncButton<EB_CALLBACK, 2, 3> enc; // просто энкодер <A, B>
//EncButton<EB_CALLBACK, 4> enc; // просто кнопка <KEY>
void setup() {
Serial.begin(9600);
enc.attach(TURN_HANDLER, myTurn);
enc.attach(TURN_H_HANDLER, myTurnH);
enc.attach(RIGHT_HANDLER, myRight);
enc.attach(LEFT_HANDLER, myLeft);
enc.attach(RIGHT_H_HANDLER, myRightH);
enc.attach(LEFT_H_HANDLER, myLeftH);
enc.attach(CLICK_HANDLER, myClick);
enc.attach(HOLDED_HANDLER, myHolded);
enc.attach(STEP_HANDLER, myStep);
enc.attach(PRESS_HANDLER, myPress);
enc.attach(RELEASE_HANDLER, myRelease);
//enc.attach(HOLD_HANDLER, myHold);
enc.attach(CLICKS_HANDLER, myClicks);
enc.attachClicks(5, fiveClicks);
}
void myTurn() {
Serial.println("TURN_HANDLER: ");
// тут можно:
Serial.println(enc.counter); // вывести счётчик
//Serial.println(enc.fast()); // проверить быстрый поворот
//Serial.println(enc.getDir()); // направление поворота
}
void myTurnH() {
Serial.println("TURN_H_HANDLER");
// тут можно:
//Serial.println(enc.counter); // вывести счётчик
//Serial.println(enc.fast()); // проверить быстрый поворот
Serial.println(enc.getDir()); // направление поворота
}
void myRight() {
Serial.println("RIGHT_HANDLER");
}
void myLeft() {
Serial.println("LEFT_HANDLER");
}
void myRightH() {
Serial.println("RIGHT_H_HANDLER");
}
void myLeftH() {
Serial.println("LEFT_H_HANDLER");
}
void myClick() {
Serial.println("CLICK_HANDLER");
}
void myHolded() {
Serial.println("HOLDED_HANDLER");
}
void myStep() {
Serial.println("STEP_HANDLER");
}
void myClicks() {
Serial.print("CLICKS_HANDLER: ");
Serial.println(enc.clicks);
}
void fiveClicks() {
Serial.println("action fiveClicks");
}
void myPress() {
Serial.println("PRESS_HANDLER");
}
void myRelease() {
Serial.println("RELEASE_HANDLER");
}
void myHold() {
Serial.println("HOLD_HANDLER");
}
// =============== LOOP =============
void loop() {
enc.tick(); // обработка всё равно здесь
}

View File

@ -0,0 +1,41 @@
// пример с небольшой оптимизацией опроса
#include <EncButton.h>
EncButton<EB_TICK, 2, 3, 4> enc; // энкодер с кнопкой <A, B, KEY>
//EncButton<EB_TICK, 2, 3> enc; // просто энкодер <A, B>
//EncButton<EB_TICK, 4> enc; // просто кнопка <KEY>
void setup() {
Serial.begin(9600);
}
void loop() {
// тик вернёт отличное от нуля значение, если произошло событие:
// 1 - left + turn
// 2 - right + turn
// 3 - leftH + turnH
// 4 - rightH + turnH
// 5 - click
// 6 - held
// 7 - step
// 8 - press
// опрос этих событий можно проводить в условии,
// чтобы "не тратить время" на постоянный опрос в loop
if (enc.tick()) {
if (enc.turn()) Serial.println("turn");
if (enc.turnH()) Serial.println("hold + turn");
if (enc.left()) Serial.println("left");
if (enc.right()) Serial.println("right");
if (enc.leftH()) Serial.println("leftH");
if (enc.rightH()) Serial.println("rightH");
if (enc.press()) Serial.println("press");
if (enc.click()) Serial.println("click");
if (enc.held()) Serial.println("held");
if (enc.step()) Serial.println("step");
// в конце лучше вызвать resetState(), чтобы сбросить необработанные флаги!
enc.resetState();
}
}

View File

@ -0,0 +1,70 @@
// пример с прерываниями pinChangeInterrupt (прерывания на любом пине)
// только для ATmega328 (UNO, Nano, Pro Mini)
#define CLK 4
#define DT 5
#define SW 6
#include <EncButton.h>
EncButton<EB_TICK, CLK, DT, SW> enc;
void setup() {
Serial.begin(9600);
// настроить PCINT
attachPCINT(CLK);
attachPCINT(DT);
}
void loop() {
// оставляем тут для работы "временных" функций и антидребезга
enc.tick();
if (enc.turn()) { // любой поворот
Serial.print("turn ");
Serial.println(enc.counter); // вывод счётчика
}
if (enc.left()) {
if (enc.fast()) Serial.println("fast left");
else Serial.println("left");
}
if (enc.right()) {
if (enc.fast()) Serial.println("fast right");
else Serial.println("right");
}
}
// функция для настройки PCINT для ATmega328 (UNO, Nano, Pro Mini)
uint8_t attachPCINT(uint8_t pin) {
if (pin < 8) { // D0-D7 - PCINT2
PCICR |= (1 << PCIE2);
PCMSK2 |= (1 << pin);
return 2;
}
else if (pin > 13) { // A0-A5 - PCINT1
PCICR |= (1 << PCIE1);
PCMSK1 |= (1 << pin - 14);
return 1;
}
else { // D8-D13 - PCINT0
PCICR |= (1 << PCIE0);
PCMSK0 |= (1 << pin - 8);
return 0;
}
}
// Векторы PCINT, нужно кинуть сюда tickISR
// пины 0-7: PCINT2
// пины 8-13: PCINT0
// пины A0-A5: PCINT1
ISR(PCINT0_vect) {
}
ISR(PCINT1_vect) {
}
ISR(PCINT2_vect) {
enc.tickISR();
}

View File

@ -0,0 +1,33 @@
// срабатывание функций held/hold/step после предварительных кликов
#include <EncButton.h>
EncButton<EB_TICK, 3> btn;
void setup() {
Serial.begin(9600);
}
void loop() {
btn.tick();
if (btn.click()) Serial.println("click");
// вызов без количества кликов перехватит все остальные вызовы!
//if (btn.held()) Serial.println("held any clicks");
if (btn.held(0)) Serial.println("held after 0 clicks");
if (btn.held(2)) Serial.println("held after 2 clicks");
// вызов без количества кликов перехватит все остальные вызовы!
//if (btn.hold()) Serial.println("hold any clicks");
//if (btn.hold(0)) Serial.println("hold after 0 clicks");
//if (btn.hold(2)) Serial.println("hold after 2 clicks");
// вызов без количества кликов перехватит все остальные вызовы!
//if (btn.step()) Serial.println("step after any clicks");
if (btn.step(0)) Serial.println("step after 0 clicks");
if (btn.step(2)) Serial.println("step after 2 clicks");
// вызов без количества кликов перехватит все остальные вызовы!
//if (btn.releaseStep()) Serial.println("release step after any clicks");
if (btn.releaseStep(0)) Serial.println("release step after 0 clicks");
if (btn.releaseStep(2)) Serial.println("release step after 2 clicks");
}

View File

@ -0,0 +1,47 @@
// используем одну КНОПКУ для удобного изменения трёх переменных
// первая - один клик, затем удержание (нажал-отпустил-нажал-держим)
// вторая - два клика, затем удержание
// третья - три клика, затем удержание
// смотри монитор порта
#include <EncButton.h>
EncButton<EB_TICK, 3> btn;
// переменные для изменения
int val_a, val_b, val_c;
// шаги изменения (signed)
int8_t step_a = 1;
int8_t step_b = 5;
int8_t step_c = 10;
void setup() {
Serial.begin(9600);
}
void loop() {
btn.tick();
// передаём количество предварительных кликов
if (btn.step(1)) {
val_a += step_a;
Serial.print("val_a: ");
Serial.println(val_a);
}
if (btn.step(2)) {
val_b += step_b;
Serial.print("val_b: ");
Serial.println(val_b);
}
if (btn.step(3)) {
val_c += step_c;
Serial.print("val_c: ");
Serial.println(val_c);
}
// разворачиваем шаг для изменения в обратную сторону
// передаём количество предварительных кликов
if (btn.releaseStep(1)) step_a = -step_a;
if (btn.releaseStep(2)) step_b = -step_b;
if (btn.releaseStep(3)) step_c = -step_c;
}

View File

@ -0,0 +1,34 @@
// Пример с прямой работой библиотеки на прерываниях
#include <EncButton.h>
EncButton<EB_TICK, 2, 3, 4> enc; // энкодер с кнопкой <A, B, KEY>
//EncButton<EB_TICK, 2, 3> enc; // просто энкодер <A, B>
//EncButton<EB_TICK, 4> enc; // просто кнопка <KEY>
void setup() {
Serial.begin(9600);
// желательно подключить оба пина энкодера на внешние прерывания по CHANGE
// можно использовать PCINT https://github.com/NicoHood/PinChangeInterrupt
attachInterrupt(0, isr, CHANGE); // D2
attachInterrupt(1, isr, CHANGE); // D3
// подключил оба прерывания на одну функцию
}
void isr() {
enc.tickISR(); // в прерывании вызываем тик ISR
}
void loop() {
// тут тоже вызываем тик, нужен для
// корректной работы дебаунсов и прочих таймеров!!!
enc.tick();
if (enc.turn()) { // любой поворот
Serial.print("turn ");
Serial.println(enc.counter); // вывод счётчика
}
// имитация загруженной программы, обработка происходит в прерывании
delay(50);
}

View File

@ -0,0 +1,78 @@
// Пример с прямой работой библиотеки
// просто загрузи и потыкай - всё будет понятно =)
// Опциональные дефайн-настройки (показаны по умолчанию)
//#define EB_FAST 30 // таймаут быстрого поворота, мс
//#define EB_DEB 50 // дебаунс кнопки, мс
//#define EB_HOLD 1000 // таймаут удержания кнопки, мс
//#define EB_STEP 500 // период срабатывания степ, мс
//#define EB_CLICK 400 // таймаут накликивания, мс
#include <EncButton.h>
//EncButton<EB_TICK, 2, 3, 4> enc; // энкодер с кнопкой <A, B, KEY>
//EncButton<EB_TICK, 2, 3> enc; // просто энкодер <A, B>
EncButton<EB_TICK, 4> enc; // просто кнопка <KEY>
// для изменения направления энкодера поменяй A и B при инициализации
// по умолчанию пины настроены в INPUT_PULLUP
// Если используется внешняя подтяжка - лучше перевести в INPUT
//EncButton<EB_TICK, 2, 3, 4> enc(INPUT);
void setup() {
Serial.begin(9600);
// ещё настройки
//enc.counter = 100; // изменение счётчика энкодера
//enc.setHoldTimeout(500); // установка таймаута удержания кнопки
//enc.setButtonLevel(HIGH); // LOW - кнопка подключает GND (умолч.), HIGH - кнопка подключает VCC
}
void loop() {
enc.tick(); // опрос происходит здесь
// =============== ЭНКОДЕР ===============
// обычный поворот
if (enc.turn()) {
Serial.println("turn");
// можно опросить ещё:
//Serial.println(enc.counter); // вывести счётчик
//Serial.println(enc.fast()); // проверить быстрый поворот
Serial.println(enc.getDir()); // направление поворота
}
// "нажатый поворот"
if (enc.turnH()) {
Serial.println("hold + turn");
// можно опросить ещё:
//Serial.println(enc.counter); // вывести счётчик
//Serial.println(enc.fast()); // проверить быстрый поворот
Serial.println(enc.getDir()); // направление поворота
}
if (enc.left()) Serial.println("left"); // поворот налево
if (enc.right()) Serial.println("right"); // поворот направо
if (enc.leftH()) Serial.println("leftH"); // нажатый поворот налево
if (enc.rightH()) Serial.println("rightH"); // нажатый поворот направо
// =============== КНОПКА ===============
if (enc.press()) Serial.println("press");
if (enc.click()) Serial.println("click");
if (enc.release()) Serial.println("release");
if (enc.held()) Serial.println("held"); // однократно вернёт true при удержании
//if (enc.hold()) Serial.println("hold"); // будет постоянно возвращать true после удержания
if (enc.step()) Serial.println("step"); // импульсное удержание
// проверка на количество кликов
if (enc.hasClicks(1)) Serial.println("action 1 clicks");
if (enc.hasClicks(2)) Serial.println("action 2 clicks");
if (enc.hasClicks(3)) Serial.println("action 3 clicks");
if (enc.hasClicks(5)) Serial.println("action 5 clicks");
// вывести количество кликов
if (enc.hasClicks()) {
Serial.print("has clicks ");
Serial.println(enc.clicks);
}
}

View File

@ -0,0 +1,33 @@
#include <EncButton.h>
EncButton<EB_TICK, VIRT_BTN> enc; // виртуальная кнопка
//EncButton<EB_TICK, VIRT_ENCBTN> enc; // виртуальный энк с кнопкой
//EncButton<EB_TICK, VIRT_ENC> enc; // виртуальный энк
void setup() {
Serial.begin(9600);
pinMode(4, INPUT_PULLUP); // подтянем пин
//enc.setHoldTimeout(500); // установка таймаута удержания кнопки
}
void loop() {
// tick может принимать виртуальный сигнал:
// (сигнал кнопки)
// (сигнал энкодера А, сигнал энкодера B)
// (сигнал энкодера А, сигнал энкодера B, сигнал кнопки)
enc.tick(!digitalRead(4));
if (enc.press()) Serial.println("press");
if (enc.click()) Serial.println("click");
if (enc.held()) Serial.println("held");
if (enc.step()) Serial.println("step");
if (enc.release()) Serial.println("release");
if (enc.hasClicks(1)) Serial.println("1 click");
if (enc.hasClicks(2)) Serial.println("2 click");
if (enc.hasClicks(3)) Serial.println("3 click");
if (enc.hasClicks(5)) Serial.println("5 click");
if (enc.hasClicks()) Serial.println(enc.clicks);
//if (enc.hold()) Serial.println("hold");
}

View File

@ -0,0 +1,35 @@
// пример работы в виртуальном режиме совместно с библиотекой AnalogKey
// https://github.com/GyverLibs/AnalogKey
#include <EncButton.h>
EncButton<EB_TICK, VIRT_BTN> btn0;
EncButton<EB_TICK, VIRT_BTN> btn1;
#include <AnalogKey.h>
// создаём массив значений сигналов с кнопок
int16_t sigs[16] = {
1023, 927, 856, 783,
671, 632, 590, 560,
504, 480, 455, 440,
399, 319, 255, 230
};
// указываем пин, количество кнопок и массив значений
AnalogKey<A0, 16, sigs> keys;
void setup() {
Serial.begin(9600);
}
void loop() {
btn0.tick(keys.status(0));
btn1.tick(keys.status(1));
// забираем действия с кнопок
if (btn0.click()) Serial.println("click 0");
if (btn0.held()) Serial.println("held 0");
if (btn1.press()) Serial.println("press 1");
if (btn1.step()) Serial.println("step 1");
}

View File

@ -0,0 +1,44 @@
// пример работы в виртуальном режиме совместно с библиотекой SimpleKeypad
// https://github.com/maximebohrer/SimpleKeypad
#include <EncButton.h>
EncButton<EB_TICK, VIRT_BTN> btn0;
EncButton<EB_TICK, VIRT_BTN> btn1;
// пины подключения (по порядку штекера)
byte colPins[] = {7, 6, 5, 4};
byte rowPins[] = {11, 10, 9, 8};
// массив имён кнопок
char keys[4][4] = {
{'1', '2', '3', 'A'},
{'4', '5', '6', 'B'},
{'7', '8', '9', 'C'},
{'*', '0', '#', 'D'}
};
#include <SimpleKeypad.h>
SimpleKeypad pad((char*)keys, rowPins, colPins, 4, 4);
void setup() {
Serial.begin(9600);
}
void loop() {
// тикаем все кнопки, передавая сравнение с кодом кнопки в цикле
// делаем это по таймеру, чтобы не опрашивать клавиатуру постоянно
static uint32_t tmr;
if (millis() - tmr >= 10) {
tmr = millis();
char key = pad.scan();
btn0.tick(key == '1');
btn1.tick(key == '2');
}
// забираем действия с кнопок
if (btn0.click()) Serial.println("click 0");
if (btn0.held()) Serial.println("held 0");
if (btn1.press()) Serial.println("press 1");
if (btn1.step()) Serial.println("step 1");
}

View File

@ -0,0 +1,44 @@
// пример работы в виртуальном режиме совместно с библиотекой SimpleKeypad
// https://github.com/maximebohrer/SimpleKeypad
// передаём EncButton сразу всю клавиатуру через массивы и циклы
#include <EncButton.h>
EncButton<EB_TICK, VIRT_BTN> btn[16];
// пины подключения (по порядку штекера)
byte colPins[] = {7, 6, 5, 4};
byte rowPins[] = {11, 10, 9, 8};
// массив имён кнопок
char keys[4][4] = {
{'1', '2', '3', 'A'},
{'4', '5', '6', 'B'},
{'7', '8', '9', 'C'},
{'*', '0', '#', 'D'}
};
#include <SimpleKeypad.h>
SimpleKeypad pad((char*)keys, rowPins, colPins, 4, 4);
void setup() {
Serial.begin(9600);
}
void loop() {
// массово тикаем все кнопки, передавая сравнение с кодом кнопки в цикле
// делаем это по таймеру, чтобы не опрашивать клавиатуру постоянно
static uint32_t tmr;
if (millis() - tmr >= 10) {
tmr = millis();
char key = pad.scan();
char* keysPtr = (char*)keys; // указатель для удобства опроса
for (int i = 0; i < 16; i++) btn[i].tick(key == keysPtr[i]);
}
// забираем действия с кнопок
if (btn[0].click()) Serial.println("click 0");
if (btn[0].held()) Serial.println("held 0");
if (btn[1].press()) Serial.println("press 1");
if (btn[1].step()) Serial.println("step 1");
}

View File

@ -0,0 +1,102 @@
#######################################
# Syntax Coloring Map For EncButton
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
EncButton KEYWORD1
EncButton2 KEYWORD1
EB_FAST KEYWORD1
EB_DEB KEYWORD1
EB_HOLD KEYWORD1
EB_STEP KEYWORD1
EB_CLICK KEYWORD1
EB_BETTER_ENC KEYWORD1
EB_HALFSTEP_ENC KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
tick KEYWORD2
tickISR KEYWORD2
getState KEYWORD2
resetState KEYWORD2
checkCallback KEYWORD2
setPins KEYWORD2
press KEYWORD2
release KEYWORD2
releaseStep KEYWORD2
fast KEYWORD2
turn KEYWORD2
turnH KEYWORD2
right KEYWORD2
left KEYWORD2
rightH KEYWORD2
leftH KEYWORD2
click KEYWORD2
held KEYWORD2
hold KEYWORD2
step KEYWORD2
busy KEYWORD2
getDir KEYWORD2
counter KEYWORD2
state KEYWORD2
hasClicks KEYWORD2
clicks KEYWORD2
attach KEYWORD2
detach KEYWORD2
attachClicks KEYWORD2
detachClicks KEYWORD2
pullUp KEYWORD2
holdEncButton KEYWORD2
setHoldTimeout KEYWORD2
setButtonLevel KEYWORD2
# deprecated
isPress KEYWORD2
isRelease KEYWORD2
isFast KEYWORD2
isTurn KEYWORD2
isTurnH KEYWORD2
isRight KEYWORD2
isLeft KEYWORD2
isRightH KEYWORD2
isLeftH KEYWORD2
isClick KEYWORD2
isHolded KEYWORD2
isHeld KEYWORD2
isHold KEYWORD2
isStep KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
EB_TICK LITERAL1
EB_CALLBACK LITERAL1
EB_BTN LITERAL1
EB_ENC LITERAL1
EB_ENCBTN LITERAL1
VIRT_BTN LITERAL1
VIRT_ENC LITERAL1
VIRT_ENCBTN LITERAL1
TURN_HANDLER LITERAL1
TURN_H_HANDLER LITERAL1
RIGHT_HANDLER LITERAL1
LEFT_HANDLER LITERAL1
RIGHT_H_HANDLER LITERAL1
LEFT_H_HANDLER LITERAL1
CLICK_HANDLER LITERAL1
HOLDED_HANDLER LITERAL1
STEP_HANDLER LITERAL1
HOLD_HANDLER LITERAL1
CLICKS_HANDLER LITERAL1
PRESS_HANDLER LITERAL1
RELEASE_HANDLER LITERAL1

View File

@ -0,0 +1,9 @@
name=EncButton
version=1.20
author=AlexGyver <alex@alexgyver.ru>
maintainer=AlexGyver <alex@alexgyver.ru>
sentence=Light and fast library for button and encoder operation for Arduino
paragraph=Turns, clicks, pool and callback mode, optimised for interrupt using
category=Sensors
url=https://github.com/GyverLibs/EncButton
architectures=*

View File

@ -0,0 +1,488 @@
/*
Ультра лёгкая и быстрая библиотека для энкодера, энкодера с кнопкой или просто кнопки
Документация:
GitHub: https://github.com/GyverLibs/EncButton
Возможности:
- Максимально быстрое чтение пинов для AVR (ATmega328/ATmega168, ATtiny85/ATtiny13)
- Оптимизированный вес
- Быстрые и лёгкие алгоритмы кнопки и энкодера
- Энкодер: поворот, нажатый поворот, быстрый поворот, счётчик
- Кнопка: антидребезг, клик, несколько кликов, счётчик кликов, удержание, режим step
- Подключение - только HIGH PULL!
- Опциональный режим callback (+22б SRAM на каждый экземпляр)
AlexGyver, alex@alexgyver.ru
https://alexgyver.ru/
MIT License
Опционально используется алгоритм из библиотеки // https://github.com/mathertel/RotaryEncoder
Версии:
v1.1 - пуллап отдельныи методом
v1.2 - можно передать конструктору параметр INPUT_PULLUP / INPUT(умолч)
v1.3 - виртуальное зажатие кнопки энкодера вынесено в отдельную функцию + мелкие улучшения
v1.4 - обработка нажатия и отпускания кнопки
v1.5 - добавлен виртуальный режим
v1.6 - оптимизация работы в прерывании
v1.6.1 - PULLUP по умолчанию
v1.7 - большая оптимизация памяти, переделан FastIO
v1.8 - индивидуальная настройка таймаута удержания кнопки (была общая на всех)
v1.8.1 - убран FastIO
v1.9 - добавлена отдельная отработка нажатого поворота и запрос направления
v1.10 - улучшил обработку released, облегчил вес в режиме callback и исправил баги
v1.11 - ещё больше всякой оптимизации + настройка уровня кнопки
v1.11.1 - совместимость Digispark
v1.12 - добавил более точный алгоритм энкодера EB_BETTER_ENC
v1.13 - добавлен экспериментальный EncButton2
v1.14 - добавлена releaseStep(). Отпускание кнопки внесено в дебаунс
v1.15 - добавлен setPins() для EncButton2
v1.16 - добавлен режим EB_HALFSTEP_ENC для полушаговых энкодеров
v1.17 - добавлен step с предварительными кликами
v1.18 - не считаем клики после активации step. held() и hold() тоже могут принимать предварительные клики. Переделан и улучшен дебаунс
v1.18.1 - исправлена ошибка в releaseStep() (не возвращала результат)
v1.18.2 - fix compiler warnings
v1.19 - оптимизация скорости, уменьшен вес в sram
v1.19.1 - ещё чутка увеличена производительность
v1.19.2 - ещё немного увеличена производительность, спасибо XRay3D
v1.19.3 - сделал высокий уровень кнопки по умолчанию в виртуальном режиме
v1.19.4 - фикс EncButton2
v1.20 - исправлена критическая ошибка в EncButton2
*/
#ifndef _EncButton_h
#define _EncButton_h
// ========= НАСТРОЙКИ (можно передефайнить из скетча) ==========
#define _EB_FAST 30 // таймаут быстрого поворота
#define _EB_DEB 50 // дебаунс кнопки
#define _EB_HOLD 1000 // таймаут удержания кнопки
#define _EB_STEP 500 // период срабатывания степ
#define _EB_CLICK 400 // таймаут накликивания
//#define EB_BETTER_ENC // точный алгоритм отработки энкодера (можно задефайнить в скетче)
// =========== НЕ ТРОГАЙ ============
#include <Arduino.h>
#ifndef nullptr
#define nullptr NULL
#endif
#ifndef EB_FAST
#define EB_FAST _EB_FAST
#endif
#ifndef EB_DEB
#define EB_DEB _EB_DEB
#endif
#ifndef EB_HOLD
#define EB_HOLD _EB_HOLD
#endif
#ifndef EB_STEP
#define EB_STEP _EB_STEP
#endif
#ifndef EB_CLICK
#define EB_CLICK _EB_CLICK
#endif
enum eb_callback {
TURN_HANDLER, // 0
LEFT_HANDLER, // 1
RIGHT_HANDLER, // 2
LEFT_H_HANDLER, // 3
RIGHT_H_HANDLER, // 4
CLICK_HANDLER, // 5
HOLDED_HANDLER, // 6
STEP_HANDLER, // 7
PRESS_HANDLER, // 8
CLICKS_HANDLER, // 9
RELEASE_HANDLER, // 10
HOLD_HANDLER, // 11
TURN_H_HANDLER, // 12
// clicks amount 13
};
// константы
#define EB_TICK 0
#define EB_CALLBACK 1
#define EB_NO_PIN 255
#define VIRT_ENC 254
#define VIRT_ENCBTN 253
#define VIRT_BTN 252
#ifdef EB_BETTER_ENC
static const int8_t _EB_DIR[] = {
0, -1, 1, 0,
1, 0, 0, -1,
-1, 0, 0, 1,
0, 1, -1, 0
};
#endif
// ===================================== CLASS =====================================
template < uint8_t _EB_MODE, uint8_t _S1 = EB_NO_PIN, uint8_t _S2 = EB_NO_PIN, uint8_t _KEY = EB_NO_PIN >
class EncButton {
public:
// можно указать режим работы пина
EncButton(const uint8_t mode = INPUT_PULLUP) {
if (_S1 < 252 && mode == INPUT_PULLUP) pullUp();
setButtonLevel(_S1 < 252 ? LOW : HIGH); // высокий уровень в виртуальном режиме
}
// подтянуть пины внутренней подтяжкой
void pullUp() {
if (_S1 < 252) { // реальное устройство
if (_S2 == EB_NO_PIN) { // обычная кнопка
pinMode(_S1, INPUT_PULLUP);
} else if (_KEY == EB_NO_PIN) { // энк без кнопки
pinMode(_S1, INPUT_PULLUP);
pinMode(_S2, INPUT_PULLUP);
} else { // энк с кнопкой
pinMode(_S1, INPUT_PULLUP);
pinMode(_S2, INPUT_PULLUP);
pinMode(_KEY, INPUT_PULLUP);
}
}
}
// установить таймаут удержания кнопки для isHold(), мс (до 30 000)
void setHoldTimeout(int tout) {
_holdT = tout >> 7;
}
// виртуально зажать кнопку энкодера
void holdEncButton(bool state) {
if (state) setF(8);
else clrF(8);
}
// уровень кнопки: LOW - кнопка подключает GND (умолч.), HIGH - кнопка подключает VCC
void setButtonLevel(bool level) {
if (level) clrF(11);
else setF(11);
}
// ===================================== TICK =====================================
// тикер, вызывать как можно чаще
// вернёт отличное от нуля значение, если произошло какое то событие
uint8_t tick(uint8_t s1 = 0, uint8_t s2 = 0, uint8_t key = 0) {
tickISR(s1, s2, key);
checkCallback();
return EBState;
}
// тикер специально для прерывания, не проверяет коллбэки
uint8_t tickISR(uint8_t s1 = 0, uint8_t s2 = 0, uint8_t key = 0) {
if (!_isrFlag) {
_isrFlag = 1;
// обработка энка (компилятор вырежет блок если не используется)
// если объявлены два пина или выбран вирт. энкодер или энкодер с кнопкой
if ((_S1 < 252 && _S2 < 252) || _S1 == VIRT_ENC || _S1 == VIRT_ENCBTN) {
uint8_t state;
if (_S1 >= 252) state = s1 | (s2 << 1); // получаем код
else state = fastRead(_S1) | (fastRead(_S2) << 1); // получаем код
poolEnc(state);
}
// обработка кнопки (компилятор вырежет блок если не используется)
// если S2 не указан (кнопка) или указан KEY или выбран вирт. энкодер с кнопкой или кнопка
if ((_S1 < 252 && _S2 == EB_NO_PIN) || _KEY != EB_NO_PIN || _S1 == VIRT_BTN || _S1 == VIRT_ENCBTN) {
if (_S1 < 252 && _S2 == EB_NO_PIN) _btnState = fastRead(_S1); // обычная кнопка
if (_KEY != EB_NO_PIN) _btnState = fastRead(_KEY); // энк с кнопкой
if (_S1 == VIRT_BTN) _btnState = s1; // вирт кнопка
if (_S1 == VIRT_ENCBTN) _btnState = key; // вирт энк с кнопкой
_btnState ^= readF(11); // инверсия кнопки
if (_btnState || readF(15)) poolBtn(); // опрос если кнопка нажата или не вышли таймауты
}
_isrFlag = 0;
}
return EBState;
}
// ===================================== CALLBACK =====================================
// проверить callback, чтобы не дёргать в прерывании
void checkCallback() {
if (_EB_MODE) {
if (turn()) exec(0);
if (turnH()) exec(12);
if (EBState > 0 && EBState <= 8) exec(EBState);
if (release()) exec(10);
if (hold()) exec(11);
if (checkFlag(6)) {
exec(9);
if (clicks == _amount) exec(13);
}
EBState = 0;
}
}
// подключить обработчик
void attach(eb_callback type, void (*handler)()) {
_callback[type] = *handler;
}
// отключить обработчик
void detach(eb_callback type) {
_callback[type] = nullptr;
}
// подключить обработчик на количество кликов (может быть только один!)
void attachClicks(uint8_t amount, void (*handler)()) {
_amount = amount;
_callback[13] = *handler;
}
// отключить обработчик на количество кликов
void detachClicks() {
_callback[13] = nullptr;
}
// ===================================== STATUS =====================================
uint8_t getState() { return EBState; } // получить статус
void resetState() { EBState = 0; } // сбросить статус
// ======================================= ENC =======================================
bool left() { return checkState(1); } // поворот влево
bool right() { return checkState(2); } // поворот вправо
bool leftH() { return checkState(3); } // поворот влево нажатый
bool rightH() { return checkState(4); } // поворот вправо нажатый
bool fast() { return readF(1); } // быстрый поворот
bool turn() { return checkFlag(0); } // энкодер повёрнут
bool turnH() { return checkFlag(9); } // энкодер повёрнут нажато
int8_t getDir() { return _dir; } // направление последнего поворота, 1 или -1
int16_t counter = 0; // счётчик энкодера
// ======================================= BTN =======================================
bool busy() { return readF(15); } // вернёт true, если всё ещё нужно вызывать tick для опроса таймаутов
bool state() { return _btnState; } // статус кнопки
bool press() { return checkState(8); } // кнопка нажата
bool release() { return checkFlag(10); } // кнопка отпущена
bool click() { return checkState(5); } // клик по кнопке
bool held() { return checkState(6); } // кнопка удержана
bool hold() { return readF(4); } // кнопка удерживается
bool step() { return checkState(7); } // режим импульсного удержания
bool releaseStep() { return checkFlag(12); } // кнопка отпущена после импульсного удержания
bool held(uint8_t clk) { return (clicks == clk) ? checkState(6) : 0; } // кнопка удержана с предварительным накликиванием
bool hold(uint8_t clk) { return (clicks == clk) ? readF(4) : 0; } // кнопка удерживается с предварительным накликиванием
bool step(uint8_t clk) { return (clicks == clk) ? checkState(7) : 0; } // режим импульсного удержания с предварительным накликиванием
bool releaseStep(uint8_t clk) { return (clicks == clk) ? checkFlag(12) : 0; } // кнопка отпущена после импульсного удержания с предварительным накликиванием
uint8_t clicks = 0; // счётчик кликов
bool hasClicks(uint8_t num) { return (clicks == num && checkFlag(7)) ? 1 : 0; } // имеются клики
uint8_t hasClicks() { return checkFlag(6) ? clicks : 0; } // имеются клики
// ===================================================================================
// =================================== DEPRECATED ====================================
bool isStep() { return step(); }
bool isHold() { return hold(); }
bool isHolded() { return held(); }
bool isHeld() { return held(); }
bool isClick() { return click(); }
bool isRelease() { return release(); }
bool isPress() { return press(); }
bool isTurnH() { return turnH(); }
bool isTurn() { return turn(); }
bool isFast() { return fast(); }
bool isLeftH() { return leftH(); }
bool isRightH() { return rightH(); }
bool isLeft() { return left(); }
bool isRight() { return right(); }
// ===================================== PRIVATE =====================================
private:
bool fastRead(const uint8_t pin) {
#if defined(__AVR_ATmega328P__) || defined(__AVR_ATmega168__)
if (pin < 8) return bitRead(PIND, pin);
else if (pin < 14) return bitRead(PINB, pin - 8);
else if (pin < 20) return bitRead(PINC, pin - 14);
#elif defined(__AVR_ATtiny85__) || defined(__AVR_ATtiny13__)
return bitRead(PINB, pin);
#else
return digitalRead(pin);
#endif
return 0;
}
// ===================================== POOL ENC =====================================
void poolEnc(uint8_t state) {
#ifdef EB_BETTER_ENC
if (_prev != state) {
_ecount += _EB_DIR[state | (_prev << 2)]; // сдвиг внутреннего счётчика
_prev = state;
#ifdef EB_HALFSTEP_ENC // полушаговый энкодер
// спасибо https://github.com/GyverLibs/EncButton/issues/10#issue-1092009489
if ((state == 0x3 || state == 0x0) && _ecount) {
#else // полношаговый
if (state == 0x3 && _ecount) { // защёлкнули позицию
#endif
uint16_t ms = millis() & 0xFFFF;
EBState = (_ecount < 0) ? 1 : 2;
_ecount = 0;
if (_S2 == EB_NO_PIN || _KEY != EB_NO_PIN) { // энкодер с кнопкой
if (!readF(4) && (_btnState || readF(8))) EBState += 2; // если кнопка не "удерживается"
}
_dir = (EBState & 1) ? -1 : 1; // направление
counter += _dir; // счётчик
if (EBState <= 2) setF(0); // флаг поворота для юзера
else if (EBState <= 4) setF(9); // флаг нажатого поворота для юзера
if (ms - _debTmr < EB_FAST) setF(1); // быстрый поворот
else clrF(1); // обычный поворот
_debTmr = ms;
}
}
#else
if (_encRST && state == 0b11) { // ресет и энк защёлкнул позицию
uint16_t ms = millis() & 0xFFFF;
if (_S2 == EB_NO_PIN || _KEY != EB_NO_PIN) { // энкодер с кнопкой
if ((_prev == 1 || _prev == 2) && !readF(4)) { // если кнопка не "удерживается" и энкодер в позиции 1 или 2
EBState = _prev;
if (_btnState || readF(8)) EBState += 2;
}
} else { // просто энкодер
if (_prev == 1 || _prev == 2) EBState = _prev;
}
if (EBState > 0) { // был поворот
_dir = (EBState & 1) ? -1 : 1; // направление
counter += _dir; // счётчик
if (EBState <= 2) setF(0); // флаг поворота для юзера
else if (EBState <= 4) setF(9); // флаг нажатого поворота для юзера
if (ms - _debTmr < EB_FAST) setF(1); // быстрый поворот
else clrF(1); // обычный поворот
}
_encRST = 0;
_debTmr = ms;
}
if (state == 0b00) _encRST = 1;
_prev = state;
#endif
}
// ===================================== POOL BTN =====================================
void poolBtn() {
uint16_t ms = millis() & 0xFFFF;
uint16_t debounce = ms - _debTmr;
if (_btnState) { // кнопка нажата
setF(15); // busy флаг
if (!readF(3)) { // и не была нажата ранее
if (readF(14)) { // ждём дебаунс
if (debounce > EB_DEB) { // прошел дебаунс
setF(3); // флаг кнопка была нажата
EBState = 8; // кнопка нажата
_debTmr = ms; // сброс таймаутов
}
} else { // первое нажатие
EBState = 0;
setF(14); // запомнили что хотим нажать
if (debounce > EB_CLICK || readF(5)) { // кнопка нажата после EB_CLICK
clicks = 0; // сбросить счётчик и флаг кликов
flags &= ~0b0011000011100000; // clear 5 6 7 12 13 (клики)
}
_debTmr = ms;
}
} else { // кнопка уже была нажата
if (!readF(4)) { // и удержание ещё не зафиксировано
if (debounce < (uint32_t)(_holdT << 7)) { // прошло меньше удержания
if (EBState != 0 && EBState != 8) setF(2); // но энкодер повёрнут! Запомнили
} else { // прошло больше времени удержания
if (!readF(2)) { // и энкодер не повёрнут
EBState = 6; // значит это удержание (сигнал)
flags |= 0b00110000; // set 4 5 запомнили что удерживается и отключаем сигнал о кликах
_debTmr = ms; // сброс таймаута
}
}
} else { // удержание зафиксировано
if (debounce > EB_STEP) { // таймер степа
EBState = 7; // сигналим
setF(13); // зафиксирован режим step
_debTmr = ms; // сброс таймаута
}
}
}
} else { // кнопка не нажата
if (readF(3)) { // но была нажата
if (debounce > EB_DEB) {
if (!readF(4) && !readF(2)) { // энкодер не трогали и не удерживали - это клик
EBState = 5; // click
clicks++;
}
flags &= ~0b00011100; // clear 2 3 4
_debTmr = ms; // сброс таймаута
setF(10); // кнопка отпущена
if (checkFlag(13)) setF(12); // кнопка отпущена после step
}
} else if (clicks && !readF(5)) { // есть клики
if (debounce > EB_CLICK) flags |= 0b11100000; // set 5 6 7 (клики)
} else clrF(15); // снимаем busy флаг
checkFlag(14); // сброс ожидания нажатия
}
}
// ===================================== MISC =====================================
bool checkState(uint8_t val) {
return (EBState == val) ? EBState = 0, 1 : 0;
}
bool checkFlag(uint8_t val) {
return readF(val) ? clrF(val), 1 : 0;
}
void exec(uint8_t num) {
if (*_callback[num]) _callback[num]();
}
inline void setF(const uint8_t x) __attribute__((always_inline)) {flags |= 1 << x;}
inline void clrF(const uint8_t x) __attribute__((always_inline)) {flags &= ~(1 << x);}
inline bool readF(const uint8_t x) __attribute__((always_inline)) {return flags & (1 << x);}
uint8_t _amount : 6;
int8_t _dir : 2;
uint8_t EBState : 4;
uint8_t _prev : 2; // можно ускорить ещё на 0.5us, если убрать битовые поля тут и ниже
bool _btnState : 1;
bool _encRST : 1;
bool _isrFlag = 0;
uint16_t flags = 0;
uint16_t _debTmr = 0;
uint8_t _holdT = (EB_HOLD >> 7);
void (*_callback[_EB_MODE ? 14 : 0])() = {};
#ifdef EB_BETTER_ENC
int8_t _ecount = 0;
#endif
// flags
// 0 - enc turn
// 1 - enc fast
// 2 - enc был поворот
// 3 - флаг кнопки
// 4 - hold
// 5 - clicks flag
// 6 - clicks get
// 7 - clicks get num
// 8 - enc button hold
// 9 - enc turn holded
// 10 - btn released
// 11 - btn level
// 12 - btn released after step
// 13 - step flag
// 14 - deb flag
// 15 - busy flag
// EBState
// 0 - idle
// 1 - left
// 2 - right
// 3 - leftH
// 4 - rightH
// 5 - click
// 6 - held
// 7 - step
// 8 - press
};
#endif

View File

@ -0,0 +1,444 @@
#ifndef _EncButton2_h
#define _EncButton2_h
// ========= НАСТРОЙКИ (можно передефайнить из скетча) ==========
#define _EB_FAST 30 // таймаут быстрого поворота
#define _EB_DEB 50 // дебаунс кнопки
#define _EB_HOLD 1000 // таймаут удержания кнопки
#define _EB_STEP 500 // период срабатывания степ
#define _EB_CLICK 400 // таймаут накликивания
//#define EB_BETTER_ENC // точный алгоритм отработки энкодера (можно задефайнить в скетче)
// =========== НЕ ТРОГАЙ ============
#include <Arduino.h>
#ifndef nullptr
#define nullptr NULL
#endif
#ifndef EB_FAST
#define EB_FAST _EB_FAST
#endif
#ifndef EB_DEB
#define EB_DEB _EB_DEB
#endif
#ifndef EB_HOLD
#define EB_HOLD _EB_HOLD
#endif
#ifndef EB_STEP
#define EB_STEP _EB_STEP
#endif
#ifndef EB_CLICK
#define EB_CLICK _EB_CLICK
#endif
enum eb_callback {
TURN_HANDLER, // 0
LEFT_HANDLER, // 1
RIGHT_HANDLER, // 2
LEFT_H_HANDLER, // 3
RIGHT_H_HANDLER, // 4
CLICK_HANDLER, // 5
HOLDED_HANDLER, // 6
STEP_HANDLER, // 7
PRESS_HANDLER, // 8
CLICKS_HANDLER, // 9
RELEASE_HANDLER, // 10
HOLD_HANDLER, // 11
TURN_H_HANDLER, // 12
// clicks amount 13
};
#ifdef EB_BETTER_ENC
static const int8_t _EB_DIR[] = {
0, -1, 1, 0,
1, 0, 0, -1,
-1, 0, 0, 1,
0, 1, -1, 0
};
#endif
// константы
#define EB_TICK 0
#define EB_CALLBACK 1
#define EB_BTN 1
#define EB_ENCBTN 2
#define EB_ENC 3
#define VIRT_BTN 4
#define VIRT_ENCBTN 5
#define VIRT_ENC 6
#define EB_PIN_AM ((_EB_TYPE == EB_BTN) ? 1 : (_EB_TYPE == EB_ENCBTN ? 3 : 2))
// ===================================== CLASS =====================================
template < uint8_t _EB_TYPE, uint8_t _EB_MODE = EB_TICK >
class EncButton2 {
public:
// pinMode, pin1, pin2, pin3
EncButton2(uint8_t mode = INPUT_PULLUP, uint8_t P1 = 255, uint8_t P2 = 255, uint8_t P3 = 255) {
setButtonLevel(_EB_TYPE <= 3 ? LOW : HIGH); // высокий уровень в виртуальном режиме
setPins(mode, P1, P2, P3);
}
// установить пины
void setPins(uint8_t mode, uint8_t P1 = 255, uint8_t P2 = 255, uint8_t P3 = 255) {
if (_EB_TYPE == EB_BTN) {
pinMode(P1, mode);
_pins[0] = P1;
} else if (_EB_TYPE == EB_ENC) {
pinMode(P1, mode);
pinMode(P2, mode);
_pins[0] = P1;
_pins[1] = P2;
} else if (_EB_TYPE == EB_ENCBTN) {
pinMode(P1, mode);
pinMode(P2, mode);
pinMode(P3, mode);
_pins[0] = P1;
_pins[1] = P2;
_pins[2] = P3;
}
}
// подтянуть пины внутренней подтяжкой
void pullUp() {
}
// установить таймаут удержания кнопки для isHold(), мс (до 30 000)
void setHoldTimeout(int tout) {
_holdT = tout >> 7;
}
// виртуально зажать кнопку энкодера
void holdEncButton(bool state) {
if (state) setF(8);
else clrF(8);
}
// уровень кнопки: LOW - кнопка подключает GND (умолч.), HIGH - кнопка подключает VCC
void setButtonLevel(bool level) {
if (level) clrF(11);
else setF(11);
}
// ===================================== TICK =====================================
// тикер, вызывать как можно чаще
// вернёт отличное от нуля значение, если произошло какое то событие
uint8_t tick(uint8_t s1 = 0, uint8_t s2 = 0, uint8_t key = 0) {
tickISR(s1, s2, key);
checkCallback();
return EBState;
}
#define EB_BTN 1
#define EB_ENCBTN 2
#define EB_ENC 3
#define VIRT_BTN 4
#define VIRT_ENCBTN 5
#define VIRT_ENC 6
// тикер специально для прерывания, не проверяет коллбэки
uint8_t tickISR(uint8_t p0 = 0, uint8_t p1 = 0, uint8_t p2 = 0) {
if (!_isrFlag) {
_isrFlag = 1;
if (_EB_TYPE <= 3) { // РЕАЛЬНОЕ УСТРОЙСТВО
if (_EB_TYPE >= 2) poolEnc(fastRead(0) | (fastRead(1) << 1)); // энк или энк с кнопкой
if (_EB_TYPE <= 2) { // кнопка или энк с кнопкой
if (_EB_TYPE == EB_BTN) _btnState = fastRead(0); // кнопка
else _btnState = fastRead(2); // энк с кнопкой
_btnState ^= readF(11); // инверсия кнопки
poolBtn();
}
} else { // ВИРТУАЛЬНОЕ УСТРОЙСТВО
if (_EB_TYPE >= 5) poolEnc(p0 | (p1 << 1)); // энк или энк с кнопкой
if (_EB_TYPE <= 5) { // кнопка или энк с кнопкой
if (_EB_TYPE == VIRT_BTN) _btnState = p0; // кнопка
else _btnState = p2; // энк с кнопкой
_btnState ^= readF(11); // инверсия кнопки
if (_btnState || readF(15)) poolBtn(); // опрос если кнопка нажата или не вышли таймауты
}
}
_isrFlag = 0;
}
return EBState;
}
// ===================================== CALLBACK =====================================
// проверить callback, чтобы не дёргать в прерывании
void checkCallback() {
if (_EB_MODE) {
if (turn()) exec(0);
if (turnH()) exec(12);
if (EBState > 0 && EBState <= 8) exec(EBState);
if (release()) exec(10);
if (hold()) exec(11);
if (checkFlag(6)) {
exec(9);
if (clicks == _amount) exec(13);
}
EBState = 0;
}
}
// подключить обработчик
void attach(eb_callback type, void (*handler)()) {
_callback[type] = *handler;
}
// отключить обработчик
void detach(eb_callback type) {
_callback[type] = nullptr;
}
// подключить обработчик на количество кликов (может быть только один!)
void attachClicks(uint8_t amount, void (*handler)()) {
_amount = amount;
_callback[13] = *handler;
}
// отключить обработчик на количество кликов
void detachClicks() {
_callback[13] = nullptr;
}
// ===================================== STATUS =====================================
uint8_t getState() { return EBState; } // получить статус
void resetState() { EBState = 0; } // сбросить статус
// ======================================= ENC =======================================
bool left() { return checkState(1); } // поворот влево
bool right() { return checkState(2); } // поворот вправо
bool leftH() { return checkState(3); } // поворот влево нажатый
bool rightH() { return checkState(4); } // поворот вправо нажатый
bool fast() { return readF(1); } // быстрый поворот
bool turn() { return checkFlag(0); } // энкодер повёрнут
bool turnH() { return checkFlag(9); } // энкодер повёрнут нажато
int8_t getDir() { return _dir; } // направление последнего поворота, 1 или -1
int16_t counter = 0; // счётчик энкодера
// ======================================= BTN =======================================
bool busy() { return readF(15); } // вернёт true, если всё ещё нужно вызывать tick для опроса таймаутов
bool state() { return _btnState; } // статус кнопки
bool press() { return checkState(8); } // кнопка нажата
bool release() { return checkFlag(10); } // кнопка отпущена
bool click() { return checkState(5); } // клик по кнопке
bool held() { return checkState(6); } // кнопка удержана
bool hold() { return readF(4); } // кнопка удерживается
bool step() { return checkState(7); } // режим импульсного удержания
bool releaseStep() { return checkFlag(12); }// кнопка отпущена после импульсного удержания
bool held(uint8_t clk) { return (clicks == clk) ? checkState(6) : 0; } // кнопка удержана с предварительным накликиванием
bool hold(uint8_t clk) { return (clicks == clk) ? readF(4) : 0; } // кнопка удерживается с предварительным накликиванием
bool step(uint8_t clk) { return (clicks == clk) ? checkState(7) : 0; } // режим импульсного удержания с предварительным накликиванием
bool releaseStep(uint8_t clk = 0) { return (clicks == clk) ? checkFlag(12) : 0; } // кнопка отпущена после импульсного удержания с предварительным накликиванием
uint8_t clicks = 0; // счётчик кликов
bool hasClicks(uint8_t num) { return (clicks == num && checkFlag(7)) ? 1 : 0; } // имеются клики
uint8_t hasClicks() { return checkFlag(6) ? clicks : 0; } // имеются клики
// ===================================================================================
// =================================== DEPRECATED ====================================
bool isStep() { return step(); }
bool isHold() { return hold(); }
bool isHolded() { return held(); }
bool isHeld() { return held(); }
bool isClick() { return click(); }
bool isRelease() { return release(); }
bool isPress() { return press(); }
bool isTurnH() { return turnH(); }
bool isTurn() { return turn(); }
bool isFast() { return fast(); }
bool isLeftH() { return leftH(); }
bool isRightH() { return rightH(); }
bool isLeft() { return left(); }
bool isRight() { return right(); }
// ===================================== PRIVATE =====================================
private:
// ===================================== POOL ENC =====================================
void poolEnc(uint8_t state) {
#ifdef EB_BETTER_ENC
if (_prev != state) {
_ecount += _EB_DIR[state | (_prev << 2)]; // сдвиг внутреннего счётчика
_prev = state;
#ifdef EB_HALFSTEP_ENC // полушаговый энкодер
// спасибо https://github.com/GyverLibs/EncButton/issues/10#issue-1092009489
if ((state == 0x3 || state == 0x0) && _ecount) {
#else // полношаговый
if (state == 0x3 && _ecount) { // защёлкнули позицию
#endif
uint16_t ms = millis() & 0xFFFF;
EBState = (_ecount < 0) ? 1 : 2;
_ecount = 0;
if (_EB_TYPE == EB_ENCBTN || _EB_TYPE == VIRT_ENCBTN) { // энкодер с кнопкой
if (!readF(4) && (_btnState || readF(8))) EBState += 2; // если кнопка не "удерживается"
}
_dir = (EBState & 1) ? -1 : 1; // направление
counter += _dir; // счётчик
if (EBState <= 2) setF(0); // флаг поворота для юзера
else if (EBState <= 4) setF(9); // флаг нажатого поворота для юзера
if (ms - _debTmr < EB_FAST) setF(1); // быстрый поворот
else clrF(1); // обычный поворот
_debTmr = ms;
}
}
#else
if (_encRST && state == 0b11) { // ресет и энк защёлкнул позицию
uint16_t ms = millis() & 0xFFFF;
if (_EB_TYPE == EB_ENCBTN || _EB_TYPE == VIRT_ENCBTN) { // энкодер с кнопкой
if ((_prev == 1 || _prev == 2) && !readF(4)) { // если кнопка не "удерживается" и энкодер в позиции 1 или 2
EBState = _prev;
if (_btnState || readF(8)) EBState += 2;
}
} else { // просто энкодер
if (_prev == 1 || _prev == 2) EBState = _prev;
}
if (EBState > 0) { // был поворот
_dir = (EBState & 1) ? -1 : 1; // направление
counter += _dir; // счётчик
if (EBState <= 2) setF(0); // флаг поворота для юзера
else if (EBState <= 4) setF(9); // флаг нажатого поворота для юзера
if (ms - _debTmr < EB_FAST) setF(1); // быстрый поворот
else clrF(1); // обычный поворот
}
_encRST = 0;
_debTmr = ms;
}
if (state == 0b00) _encRST = 1;
_prev = state;
#endif
}
// ===================================== POOL BTN =====================================
void poolBtn() {
uint16_t ms = millis() & 0xFFFF;
uint16_t debounce = ms - _debTmr;
if (_btnState) { // кнопка нажата
setF(15); // busy флаг
if (!readF(3)) { // и не была нажата ранее
if (readF(14)) { // ждём дебаунс
if (debounce > EB_DEB) { // прошел дебаунс
setF(3); // флаг кнопка была нажата
EBState = 8; // кнопка нажата
_debTmr = ms; // сброс таймаутов
}
} else { // первое нажатие
EBState = 0;
setF(14); // запомнили что хотим нажать
if (debounce > EB_CLICK || readF(5)) { // кнопка нажата после EB_CLICK
clicks = 0; // сбросить счётчик и флаг кликов
flags &= ~0b0011000011100000; // clear 5 6 7 12 13 (клики)
}
_debTmr = ms;
}
} else { // кнопка уже была нажата
if (!readF(4)) { // и удержание ещё не зафиксировано
if (debounce < (uint32_t)(_holdT << 7)) { // прошло меньше удержания
if (EBState != 0 && EBState != 8) setF(2); // но энкодер повёрнут! Запомнили
} else { // прошло больше времени удержания
if (!readF(2)) { // и энкодер не повёрнут
EBState = 6; // значит это удержание (сигнал)
flags |= 0b00110000; // set 4 5 запомнили что удерживается и отключаем сигнал о кликах
_debTmr = ms; // сброс таймаута
}
}
} else { // удержание зафиксировано
if (debounce > EB_STEP) { // таймер степа
EBState = 7; // сигналим
setF(13); // зафиксирован режим step
_debTmr = ms; // сброс таймаута
}
}
}
} else { // кнопка не нажата
if (readF(3)) { // но была нажата
if (debounce > EB_DEB) {
if (!readF(4) && !readF(2)) { // энкодер не трогали и не удерживали - это клик
EBState = 5; // click
clicks++;
}
flags &= ~0b00011100; // clear 2 3 4
_debTmr = ms; // сброс таймаута
setF(10); // кнопка отпущена
if (checkFlag(13)) setF(12); // кнопка отпущена после step
}
} else if (clicks && !readF(5)) { // есть клики
if (debounce > EB_CLICK) flags |= 0b11100000; // set 5 6 7 (клики)
} else clrF(15); // снимаем busy флаг
checkFlag(14); // сброс ожидания нажатия
}
}
// ===================================== MISC =====================================
bool fastRead(uint8_t pin) {
return digitalRead(_pins[pin]);
}
bool checkState(uint8_t val) {
return (EBState == val) ? EBState = 0, 1 : 0;
}
bool checkFlag(uint8_t val) {
return readF(val) ? clrF(val), 1 : 0;
}
void exec(uint8_t num) {
if (*_callback[num]) _callback[num]();
}
inline void setF(const uint8_t x) __attribute__((always_inline)) {flags |= 1 << x;}
inline void clrF(const uint8_t x) __attribute__((always_inline)) {flags &= ~(1 << x);}
inline bool readF(const uint8_t x) __attribute__((always_inline)) {return flags & (1 << x);}
uint8_t _amount : 6;
int8_t _dir : 2;
uint8_t EBState : 4;
uint8_t _prev : 2;
bool _btnState : 1;
bool _encRST : 1;
bool _isrFlag = 0;
uint16_t flags = 0;
uint16_t _debTmr = 0;
uint8_t _holdT = (EB_HOLD >> 7);
void (*_callback[_EB_MODE ? 14 : 0])() = {};
#ifdef EB_BETTER_ENC
int8_t _ecount = 0;
#endif
uint8_t _pins[EB_PIN_AM];
// flags
// 0 - enc turn
// 1 - enc fast
// 2 - enc был поворот
// 3 - флаг кнопки
// 4 - hold
// 5 - clicks flag
// 6 - clicks get
// 7 - clicks get num
// 8 - enc button hold
// 9 - enc turn holded
// 10 - btn released
// 11 - btn level
// 12 - btn released after step
// 13 - step flag
// 14 - deb flag
// 15 - busy flag
// EBState
// 0 - idle
// 1 - left
// 2 - right
// 3 - leftH
// 4 - rightH
// 5 - click
// 6 - held
// 7 - step
// 8 - press
};
#endif

View File

@ -0,0 +1,38 @@
Alberto Panu https://github.com/bigjohnson
Alasdair Allan https://github.com/aallan
Alice Pintus https://github.com/00alis
Adrian McEwen https://github.com/amcewen
Arduino LLC http://arduino.cc/
Arnie97 https://github.com/Arnie97
Arturo Guadalupi https://github.com/agdl
Bjoern Hartmann https://people.eecs.berkeley.edu/~bjoern/
chaveiro https://github.com/chaveiro
Cristian Maglie https://github.com/cmaglie
David A. Mellis https://github.com/damellis
Dino Tinitigan https://github.com/bigdinotech
Eddy https://github.com/eddyst
Federico Vanzati https://github.com/Fede85
Federico Fissore https://github.com/ffissore
Jack Christensen https://github.com/JChristensen
Johann Richard https://github.com/johannrichard
Jordan Terrell https://github.com/iSynaptic
Justin Paulin https://github.com/interwho
lathoub https://github.com/lathoub
Martino Facchin https://github.com/facchinm
Matthias Hertel https://github.com/mathertel
Matthijs Kooijman https://github.com/matthijskooijman
Matt Robinson https://github.com/ribbons
MCQN Ltd. http://mcqn.com/
Michael Amie https://github.com/michaelamie
Michael Margolis https://github.com/michaelmargolis
Norbert Truchsess https://github.com/ntruchsess
Paul Stoffregen https://github.com/PaulStoffregen
per1234 https://github.com/per1234
Richard Sim
Scott Fitzgerald https://github.com/shfitz
Thibaut Viard https://github.com/aethaniel
Tom Igoe https://github.com/tigoe
WizNet http://www.wiznet.co.kr
Zach Eveland https://github.com/zeveland

View File

@ -0,0 +1,24 @@
= Ethernet Library for Arduino =
With the Arduino Ethernet Shield, this library allows an Arduino board to connect to the internet.
For more information about this library please visit us at
http://www.arduino.cc/en/Reference/Ethernet
== License ==
Copyright (c) 2010 Arduino LLC. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

View File

@ -0,0 +1,119 @@
/*
Advanced Chat Server
A more advanced server that distributes any incoming messages
to all connected clients but the client the message comes from.
To use, telnet to your device's IP address and type.
You can see the client's input in the serial monitor as well.
Using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 18 Dec 2009
by David A. Mellis
modified 9 Apr 2012
by Tom Igoe
redesigned to make use of operator== 25 Nov 2013
by Norbert Truchsess
*/
#include <SPI.h>
#include <Ethernet.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network.
// gateway and subnet are optional:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
IPAddress ip(192, 168, 1, 177);
IPAddress myDns(192, 168, 1, 1);
IPAddress gateway(192, 168, 1, 1);
IPAddress subnet(255, 255, 0, 0);
// telnet defaults to port 23
EthernetServer server(23);
EthernetClient clients[8];
void setup() {
// You can use Ethernet.init(pin) to configure the CS pin
//Ethernet.init(10); // Most Arduino shields
//Ethernet.init(5); // MKR ETH shield
//Ethernet.init(0); // Teensy 2.0
//Ethernet.init(20); // Teensy++ 2.0
//Ethernet.init(15); // ESP8266 with Adafruit Featherwing Ethernet
//Ethernet.init(33); // ESP32 with Adafruit Featherwing Ethernet
// initialize the Ethernet device
Ethernet.begin(mac, ip, myDns, gateway, subnet);
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// Check for Ethernet hardware present
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
Serial.println("Ethernet shield was not found. Sorry, can't run without hardware. :(");
while (true) {
delay(1); // do nothing, no point running without Ethernet hardware
}
}
if (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable is not connected.");
}
// start listening for clients
server.begin();
Serial.print("Chat server address:");
Serial.println(Ethernet.localIP());
}
void loop() {
// check for any new client connecting, and say hello (before any incoming data)
EthernetClient newClient = server.accept();
if (newClient) {
for (byte i=0; i < 8; i++) {
if (!clients[i]) {
Serial.print("We have a new client #");
Serial.println(i);
newClient.print("Hello, client number: ");
newClient.println(i);
// Once we "accept", the client is no longer tracked by EthernetServer
// so we must store it into our list of clients
clients[i] = newClient;
break;
}
}
}
// check for incoming data from all clients
for (byte i=0; i < 8; i++) {
if (clients[i] && clients[i].available() > 0) {
// read bytes from a client
byte buffer[80];
int count = clients[i].read(buffer, 80);
// write the bytes to all other connected clients
for (byte j=0; j < 8; j++) {
if (j != i && clients[j].connected()) {
clients[j].write(buffer, count);
}
}
}
}
// stop any clients which disconnect
for (byte i=0; i < 8; i++) {
if (clients[i] && !clients[i].connected()) {
Serial.print("disconnect client #");
Serial.println(i);
clients[i].stop();
}
}
}

View File

@ -0,0 +1,247 @@
/*
SCP1000 Barometric Pressure Sensor Display
Serves the output of a Barometric Pressure Sensor as a web page.
Uses the SPI library. For details on the sensor, see:
http://www.sparkfun.com/commerce/product_info.php?products_id=8161
This sketch adapted from Nathan Seidle's SCP1000 example for PIC:
http://www.sparkfun.com/datasheets/Sensors/SCP1000-Testing.zip
TODO: this hardware is long obsolete. This example program should
be rewritten to use https://www.sparkfun.com/products/9721
Circuit:
SCP1000 sensor attached to pins 6,7, and 11 - 13:
DRDY: pin 6
CSB: pin 7
MOSI: pin 11
MISO: pin 12
SCK: pin 13
created 31 July 2010
by Tom Igoe
*/
#include <Ethernet.h>
// the sensor communicates using SPI, so include the library:
#include <SPI.h>
// assign a MAC address for the Ethernet controller.
// fill in your address here:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
// assign an IP address for the controller:
IPAddress ip(192, 168, 1, 20);
// Initialize the Ethernet server library
// with the IP address and port you want to use
// (port 80 is default for HTTP):
EthernetServer server(80);
//Sensor's memory register addresses:
const int PRESSURE = 0x1F; //3 most significant bits of pressure
const int PRESSURE_LSB = 0x20; //16 least significant bits of pressure
const int TEMPERATURE = 0x21; //16 bit temperature reading
// pins used for the connection with the sensor
// the others you need are controlled by the SPI library):
const int dataReadyPin = 6;
const int chipSelectPin = 7;
float temperature = 0.0;
long pressure = 0;
long lastReadingTime = 0;
void setup() {
// You can use Ethernet.init(pin) to configure the CS pin
//Ethernet.init(10); // Most Arduino shields
//Ethernet.init(5); // MKR ETH shield
//Ethernet.init(0); // Teensy 2.0
//Ethernet.init(20); // Teensy++ 2.0
//Ethernet.init(15); // ESP8266 with Adafruit Featherwing Ethernet
//Ethernet.init(33); // ESP32 with Adafruit Featherwing Ethernet
// start the SPI library:
SPI.begin();
// start the Ethernet connection
Ethernet.begin(mac, ip);
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// Check for Ethernet hardware present
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
Serial.println("Ethernet shield was not found. Sorry, can't run without hardware. :(");
while (true) {
delay(1); // do nothing, no point running without Ethernet hardware
}
}
if (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable is not connected.");
}
// start listening for clients
server.begin();
// initalize the data ready and chip select pins:
pinMode(dataReadyPin, INPUT);
pinMode(chipSelectPin, OUTPUT);
//Configure SCP1000 for low noise configuration:
writeRegister(0x02, 0x2D);
writeRegister(0x01, 0x03);
writeRegister(0x03, 0x02);
// give the sensor and Ethernet shield time to set up:
delay(1000);
//Set the sensor to high resolution mode tp start readings:
writeRegister(0x03, 0x0A);
}
void loop() {
// check for a reading no more than once a second.
if (millis() - lastReadingTime > 1000) {
// if there's a reading ready, read it:
// don't do anything until the data ready pin is high:
if (digitalRead(dataReadyPin) == HIGH) {
getData();
// timestamp the last time you got a reading:
lastReadingTime = millis();
}
}
// listen for incoming Ethernet connections:
listenForEthernetClients();
}
void getData() {
Serial.println("Getting reading");
//Read the temperature data
int tempData = readRegister(0x21, 2);
// convert the temperature to celsius and display it:
temperature = (float)tempData / 20.0;
//Read the pressure data highest 3 bits:
byte pressureDataHigh = readRegister(0x1F, 1);
pressureDataHigh &= 0b00000111; //you only needs bits 2 to 0
//Read the pressure data lower 16 bits:
unsigned int pressureDataLow = readRegister(0x20, 2);
//combine the two parts into one 19-bit number:
pressure = ((pressureDataHigh << 16) | pressureDataLow) / 4;
Serial.print("Temperature: ");
Serial.print(temperature);
Serial.println(" degrees C");
Serial.print("Pressure: " + String(pressure));
Serial.println(" Pa");
}
void listenForEthernetClients() {
// listen for incoming clients
EthernetClient client = server.available();
if (client) {
Serial.println("Got a client");
// an http request ends with a blank line
boolean currentLineIsBlank = true;
while (client.connected()) {
if (client.available()) {
char c = client.read();
// if you've gotten to the end of the line (received a newline
// character) and the line is blank, the http request has ended,
// so you can send a reply
if (c == '\n' && currentLineIsBlank) {
// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();
// print the current readings, in HTML format:
client.print("Temperature: ");
client.print(temperature);
client.print(" degrees C");
client.println("<br />");
client.print("Pressure: " + String(pressure));
client.print(" Pa");
client.println("<br />");
break;
}
if (c == '\n') {
// you're starting a new line
currentLineIsBlank = true;
} else if (c != '\r') {
// you've gotten a character on the current line
currentLineIsBlank = false;
}
}
}
// give the web browser time to receive the data
delay(1);
// close the connection:
client.stop();
}
}
//Send a write command to SCP1000
void writeRegister(byte registerName, byte registerValue) {
// SCP1000 expects the register name in the upper 6 bits
// of the byte:
registerName <<= 2;
// command (read or write) goes in the lower two bits:
registerName |= 0b00000010; //Write command
// take the chip select low to select the device:
digitalWrite(chipSelectPin, LOW);
SPI.transfer(registerName); //Send register location
SPI.transfer(registerValue); //Send value to record into register
// take the chip select high to de-select:
digitalWrite(chipSelectPin, HIGH);
}
//Read register from the SCP1000:
unsigned int readRegister(byte registerName, int numBytes) {
byte inByte = 0; // incoming from the SPI read
unsigned int result = 0; // result to return
// SCP1000 expects the register name in the upper 6 bits
// of the byte:
registerName <<= 2;
// command (read or write) goes in the lower two bits:
registerName &= 0b11111100; //Read command
// take the chip select low to select the device:
digitalWrite(chipSelectPin, LOW);
// send the device the register you want to read:
int command = SPI.transfer(registerName);
// send a value of 0 to read the first byte returned:
inByte = SPI.transfer(0x00);
result = inByte;
// if there's more than one byte returned,
// shift the first byte then get the second byte:
if (numBytes > 1) {
result = inByte << 8;
inByte = SPI.transfer(0x00);
result = result | inByte;
}
// take the chip select high to de-select:
digitalWrite(chipSelectPin, HIGH);
// return the result:
return (result);
}

View File

@ -0,0 +1,99 @@
/*
Chat Server
A simple server that distributes any incoming messages to all
connected clients. To use, telnet to your device's IP address and type.
You can see the client's input in the serial monitor as well.
Using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 18 Dec 2009
by David A. Mellis
modified 9 Apr 2012
by Tom Igoe
*/
#include <SPI.h>
#include <Ethernet.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network.
// gateway and subnet are optional:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192, 168, 1, 177);
IPAddress myDns(192, 168, 1, 1);
IPAddress gateway(192, 168, 1, 1);
IPAddress subnet(255, 255, 0, 0);
// telnet defaults to port 23
EthernetServer server(23);
boolean alreadyConnected = false; // whether or not the client was connected previously
void setup() {
// You can use Ethernet.init(pin) to configure the CS pin
//Ethernet.init(10); // Most Arduino shields
//Ethernet.init(5); // MKR ETH shield
//Ethernet.init(0); // Teensy 2.0
//Ethernet.init(20); // Teensy++ 2.0
//Ethernet.init(15); // ESP8266 with Adafruit Featherwing Ethernet
//Ethernet.init(33); // ESP32 with Adafruit Featherwing Ethernet
// initialize the ethernet device
Ethernet.begin(mac, ip, myDns, gateway, subnet);
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// Check for Ethernet hardware present
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
Serial.println("Ethernet shield was not found. Sorry, can't run without hardware. :(");
while (true) {
delay(1); // do nothing, no point running without Ethernet hardware
}
}
if (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable is not connected.");
}
// start listening for clients
server.begin();
Serial.print("Chat server address:");
Serial.println(Ethernet.localIP());
}
void loop() {
// wait for a new client:
EthernetClient client = server.available();
// when the client sends the first byte, say hello:
if (client) {
if (!alreadyConnected) {
// clear out the input buffer:
client.flush();
Serial.println("We have a new client");
client.println("Hello, client!");
alreadyConnected = true;
}
if (client.available() > 0) {
// read the bytes incoming from the client:
char thisChar = client.read();
// echo the bytes back to the client:
server.write(thisChar);
// echo the bytes to the server as well:
Serial.write(thisChar);
}
}
}

View File

@ -0,0 +1,95 @@
/*
DHCP-based IP printer
This sketch uses the DHCP extensions to the Ethernet library
to get an IP address via DHCP and print the address obtained.
using an Arduino Wiznet Ethernet shield.
Circuit:
Ethernet shield attached to pins 10, 11, 12, 13
created 12 April 2011
modified 9 Apr 2012
by Tom Igoe
modified 02 Sept 2015
by Arturo Guadalupi
*/
#include <SPI.h>
#include <Ethernet.h>
// Enter a MAC address for your controller below.
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
byte mac[] = {
0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02
};
void setup() {
// You can use Ethernet.init(pin) to configure the CS pin
//Ethernet.init(10); // Most Arduino shields
//Ethernet.init(5); // MKR ETH shield
//Ethernet.init(0); // Teensy 2.0
//Ethernet.init(20); // Teensy++ 2.0
//Ethernet.init(15); // ESP8266 with Adafruit Featherwing Ethernet
//Ethernet.init(33); // ESP32 with Adafruit Featherwing Ethernet
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// start the Ethernet connection:
Serial.println("Initialize Ethernet with DHCP:");
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
Serial.println("Ethernet shield was not found. Sorry, can't run without hardware. :(");
} else if (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable is not connected.");
}
// no point in carrying on, so do nothing forevermore:
while (true) {
delay(1);
}
}
// print your local IP address:
Serial.print("My IP address: ");
Serial.println(Ethernet.localIP());
}
void loop() {
switch (Ethernet.maintain()) {
case 1:
//renewed fail
Serial.println("Error: renewed fail");
break;
case 2:
//renewed success
Serial.println("Renewed success");
//print your local IP address:
Serial.print("My IP address: ");
Serial.println(Ethernet.localIP());
break;
case 3:
//rebind fail
Serial.println("Error: rebind fail");
break;
case 4:
//rebind success
Serial.println("Rebind success");
//print your local IP address:
Serial.print("My IP address: ");
Serial.println(Ethernet.localIP());
break;
default:
//nothing happened
break;
}
}

View File

@ -0,0 +1,102 @@
/*
DHCP Chat Server
A simple server that distributes any incoming messages to all
connected clients. To use, telnet to your device's IP address and type.
You can see the client's input in the serial monitor as well.
Using an Arduino Wiznet Ethernet shield.
THis version attempts to get an IP address using DHCP
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 21 May 2011
modified 9 Apr 2012
by Tom Igoe
modified 02 Sept 2015
by Arturo Guadalupi
Based on ChatServer example by David A. Mellis
*/
#include <SPI.h>
#include <Ethernet.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network.
// gateway and subnet are optional:
byte mac[] = {
0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02
};
IPAddress ip(192, 168, 1, 177);
IPAddress myDns(192, 168, 1, 1);
IPAddress gateway(192, 168, 1, 1);
IPAddress subnet(255, 255, 0, 0);
// telnet defaults to port 23
EthernetServer server(23);
boolean gotAMessage = false; // whether or not you got a message from the client yet
void setup() {
// You can use Ethernet.init(pin) to configure the CS pin
//Ethernet.init(10); // Most Arduino shields
//Ethernet.init(5); // MKR ETH shield
//Ethernet.init(0); // Teensy 2.0
//Ethernet.init(20); // Teensy++ 2.0
//Ethernet.init(15); // ESP8266 with Adafruit Featherwing Ethernet
//Ethernet.init(33); // ESP32 with Adafruit Featherwing Ethernet
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// start the Ethernet connection:
Serial.println("Trying to get an IP address using DHCP");
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// Check for Ethernet hardware present
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
Serial.println("Ethernet shield was not found. Sorry, can't run without hardware. :(");
while (true) {
delay(1); // do nothing, no point running without Ethernet hardware
}
}
if (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable is not connected.");
}
// initialize the Ethernet device not using DHCP:
Ethernet.begin(mac, ip, myDns, gateway, subnet);
}
// print your local IP address:
Serial.print("My IP address: ");
Serial.println(Ethernet.localIP());
// start listening for clients
server.begin();
}
void loop() {
// wait for a new client:
EthernetClient client = server.available();
// when the client sends the first byte, say hello:
if (client) {
if (!gotAMessage) {
Serial.println("We have a new client");
client.println("Hello, client!");
gotAMessage = true;
}
// read the bytes incoming from the client:
char thisChar = client.read();
// echo the bytes back to the client:
server.write(thisChar);
// echo the bytes to the server as well:
Serial.print(thisChar);
Ethernet.maintain();
}
}

View File

@ -0,0 +1,43 @@
/*
Link Status
This sketch prints the ethernet link status. When the
ethernet cable is connected the link status should go to "ON".
NOTE: Only WizNet W5200 and W5500 are capable of reporting
the link status. W5100 will report "Unknown".
Hardware:
- Ethernet shield or equivalent board/shield with WizNet 5200/5500
Written by Cristian Maglie
This example is public domain.
*/
#include <SPI.h>
#include <Ethernet.h>
void setup() {
// You can use Ethernet.init(pin) to configure the CS pin
//Ethernet.init(10); // Most Arduino shields
//Ethernet.init(5); // MKR ETH shield
//Ethernet.init(0); // Teensy 2.0
//Ethernet.init(20); // Teensy++ 2.0
//Ethernet.init(15); // ESP8266 with Adafruit Featherwing Ethernet
//Ethernet.init(33); // ESP32 with Adafruit Featherwing Ethernet
Serial.begin(9600);
}
void loop() {
auto link = Ethernet.linkStatus();
Serial.print("Link status: ");
switch (link) {
case Unknown:
Serial.println("Unknown");
break;
case LinkON:
Serial.println("ON");
break;
case LinkOFF:
Serial.println("OFF");
break;
}
delay(1000);
}

View File

@ -0,0 +1,113 @@
/*
Telnet client
This sketch connects to a a telnet server (http://www.google.com)
using an Arduino Wiznet Ethernet shield. You'll need a telnet server
to test this with.
Processing's ChatServer example (part of the network library) works well,
running on port 10002. It can be found as part of the examples
in the Processing application, available at
http://processing.org/
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 14 Sep 2010
modified 9 Apr 2012
by Tom Igoe
*/
#include <SPI.h>
#include <Ethernet.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
IPAddress ip(192, 168, 1, 177);
// Enter the IP address of the server you're connecting to:
IPAddress server(1, 1, 1, 1);
// Initialize the Ethernet client library
// with the IP address and port of the server
// that you want to connect to (port 23 is default for telnet;
// if you're using Processing's ChatServer, use port 10002):
EthernetClient client;
void setup() {
// You can use Ethernet.init(pin) to configure the CS pin
//Ethernet.init(10); // Most Arduino shields
//Ethernet.init(5); // MKR ETH shield
//Ethernet.init(0); // Teensy 2.0
//Ethernet.init(20); // Teensy++ 2.0
//Ethernet.init(15); // ESP8266 with Adafruit Featherwing Ethernet
//Ethernet.init(33); // ESP32 with Adafruit Featherwing Ethernet
// start the Ethernet connection:
Ethernet.begin(mac, ip);
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// Check for Ethernet hardware present
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
Serial.println("Ethernet shield was not found. Sorry, can't run without hardware. :(");
while (true) {
delay(1); // do nothing, no point running without Ethernet hardware
}
}
while (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable is not connected.");
delay(500);
}
// give the Ethernet shield a second to initialize:
delay(1000);
Serial.println("connecting...");
// if you get a connection, report back via serial:
if (client.connect(server, 10002)) {
Serial.println("connected");
} else {
// if you didn't get a connection to the server:
Serial.println("connection failed");
}
}
void loop() {
// if there are incoming bytes available
// from the server, read them and print them:
if (client.available()) {
char c = client.read();
Serial.print(c);
}
// as long as there are bytes in the serial queue,
// read them and send them out the socket if it's open:
while (Serial.available() > 0) {
char inChar = Serial.read();
if (client.connected()) {
client.print(inChar);
}
}
// if the server's disconnected, stop the client:
if (!client.connected()) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
// do nothing:
while (true) {
delay(1);
}
}
}

View File

@ -0,0 +1,139 @@
/*
UDPSendReceiveString:
This sketch receives UDP message strings, prints them to the serial port
and sends an "acknowledge" string back to the sender
A Processing sketch is included at the end of file that can be used to send
and received messages for testing with a computer.
created 21 Aug 2010
by Michael Margolis
This code is in the public domain.
*/
#include <Ethernet.h>
#include <EthernetUdp.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
IPAddress ip(192, 168, 1, 177);
unsigned int localPort = 8888; // local port to listen on
// buffers for receiving and sending data
char packetBuffer[UDP_TX_PACKET_MAX_SIZE]; // buffer to hold incoming packet,
char ReplyBuffer[] = "acknowledged"; // a string to send back
// An EthernetUDP instance to let us send and receive packets over UDP
EthernetUDP Udp;
void setup() {
// You can use Ethernet.init(pin) to configure the CS pin
//Ethernet.init(10); // Most Arduino shields
//Ethernet.init(5); // MKR ETH shield
//Ethernet.init(0); // Teensy 2.0
//Ethernet.init(20); // Teensy++ 2.0
//Ethernet.init(15); // ESP8266 with Adafruit Featherwing Ethernet
//Ethernet.init(33); // ESP32 with Adafruit Featherwing Ethernet
// start the Ethernet
Ethernet.begin(mac, ip);
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// Check for Ethernet hardware present
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
Serial.println("Ethernet shield was not found. Sorry, can't run without hardware. :(");
while (true) {
delay(1); // do nothing, no point running without Ethernet hardware
}
}
if (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable is not connected.");
}
// start UDP
Udp.begin(localPort);
}
void loop() {
// if there's data available, read a packet
int packetSize = Udp.parsePacket();
if (packetSize) {
Serial.print("Received packet of size ");
Serial.println(packetSize);
Serial.print("From ");
IPAddress remote = Udp.remoteIP();
for (int i=0; i < 4; i++) {
Serial.print(remote[i], DEC);
if (i < 3) {
Serial.print(".");
}
}
Serial.print(", port ");
Serial.println(Udp.remotePort());
// read the packet into packetBufffer
Udp.read(packetBuffer, UDP_TX_PACKET_MAX_SIZE);
Serial.println("Contents:");
Serial.println(packetBuffer);
// send a reply to the IP address and port that sent us the packet we received
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());
Udp.write(ReplyBuffer);
Udp.endPacket();
}
delay(10);
}
/*
Processing sketch to run with this example
=====================================================
// Processing UDP example to send and receive string data from Arduino
// press any key to send the "Hello Arduino" message
import hypermedia.net.*;
UDP udp; // define the UDP object
void setup() {
udp = new UDP( this, 6000 ); // create a new datagram connection on port 6000
//udp.log( true ); // <-- printout the connection activity
udp.listen( true ); // and wait for incoming message
}
void draw()
{
}
void keyPressed() {
String ip = "192.168.1.177"; // the remote IP address
int port = 8888; // the destination port
udp.send("Hello World", ip, port ); // the message to send
}
void receive( byte[] data ) { // <-- default handler
//void receive( byte[] data, String ip, int port ) { // <-- extended handler
for(int i=0; i < data.length; i++)
print(char(data[i]));
println();
}
*/

View File

@ -0,0 +1,156 @@
/*
Udp NTP Client
Get the time from a Network Time Protocol (NTP) time server
Demonstrates use of UDP sendPacket and ReceivePacket
For more on NTP time servers and the messages needed to communicate with them,
see http://en.wikipedia.org/wiki/Network_Time_Protocol
created 4 Sep 2010
by Michael Margolis
modified 9 Apr 2012
by Tom Igoe
modified 02 Sept 2015
by Arturo Guadalupi
This code is in the public domain.
*/
#include <SPI.h>
#include <Ethernet.h>
#include <EthernetUdp.h>
// Enter a MAC address for your controller below.
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
unsigned int localPort = 8888; // local port to listen for UDP packets
const char timeServer[] = "time.nist.gov"; // time.nist.gov NTP server
const int NTP_PACKET_SIZE = 48; // NTP time stamp is in the first 48 bytes of the message
byte packetBuffer[NTP_PACKET_SIZE]; //buffer to hold incoming and outgoing packets
// A UDP instance to let us send and receive packets over UDP
EthernetUDP Udp;
void setup() {
// You can use Ethernet.init(pin) to configure the CS pin
//Ethernet.init(10); // Most Arduino shields
//Ethernet.init(5); // MKR ETH shield
//Ethernet.init(0); // Teensy 2.0
//Ethernet.init(20); // Teensy++ 2.0
//Ethernet.init(15); // ESP8266 with Adafruit Featherwing Ethernet
//Ethernet.init(33); // ESP32 with Adafruit Featherwing Ethernet
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// start Ethernet and UDP
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// Check for Ethernet hardware present
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
Serial.println("Ethernet shield was not found. Sorry, can't run without hardware. :(");
} else if (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable is not connected.");
}
// no point in carrying on, so do nothing forevermore:
while (true) {
delay(1);
}
}
Udp.begin(localPort);
}
void loop() {
sendNTPpacket(timeServer); // send an NTP packet to a time server
// wait to see if a reply is available
delay(1000);
if (Udp.parsePacket()) {
// We've received a packet, read the data from it
Udp.read(packetBuffer, NTP_PACKET_SIZE); // read the packet into the buffer
// the timestamp starts at byte 40 of the received packet and is four bytes,
// or two words, long. First, extract the two words:
unsigned long highWord = word(packetBuffer[40], packetBuffer[41]);
unsigned long lowWord = word(packetBuffer[42], packetBuffer[43]);
// combine the four bytes (two words) into a long integer
// this is NTP time (seconds since Jan 1 1900):
unsigned long secsSince1900 = highWord << 16 | lowWord;
Serial.print("Seconds since Jan 1 1900 = ");
Serial.println(secsSince1900);
// now convert NTP time into everyday time:
Serial.print("Unix time = ");
// Unix time starts on Jan 1 1970. In seconds, that's 2208988800:
const unsigned long seventyYears = 2208988800UL;
// subtract seventy years:
unsigned long epoch = secsSince1900 - seventyYears;
// print Unix time:
Serial.println(epoch);
// print the hour, minute and second:
Serial.print("The UTC time is "); // UTC is the time at Greenwich Meridian (GMT)
Serial.print((epoch % 86400L) / 3600); // print the hour (86400 equals secs per day)
Serial.print(':');
if (((epoch % 3600) / 60) < 10) {
// In the first 10 minutes of each hour, we'll want a leading '0'
Serial.print('0');
}
Serial.print((epoch % 3600) / 60); // print the minute (3600 equals secs per minute)
Serial.print(':');
if ((epoch % 60) < 10) {
// In the first 10 seconds of each minute, we'll want a leading '0'
Serial.print('0');
}
Serial.println(epoch % 60); // print the second
}
// wait ten seconds before asking for the time again
delay(10000);
Ethernet.maintain();
}
// send an NTP request to the time server at the given address
void sendNTPpacket(const char * address) {
// set all bytes in the buffer to 0
memset(packetBuffer, 0, NTP_PACKET_SIZE);
// Initialize values needed to form NTP request
// (see URL above for details on the packets)
packetBuffer[0] = 0b11100011; // LI, Version, Mode
packetBuffer[1] = 0; // Stratum, or type of clock
packetBuffer[2] = 6; // Polling Interval
packetBuffer[3] = 0xEC; // Peer Clock Precision
// 8 bytes of zero for Root Delay & Root Dispersion
packetBuffer[12] = 49;
packetBuffer[13] = 0x4E;
packetBuffer[14] = 49;
packetBuffer[15] = 52;
// all NTP fields have been given values, now
// you can send a packet requesting a timestamp:
Udp.beginPacket(address, 123); // NTP requests are to port 123
Udp.write(packetBuffer, NTP_PACKET_SIZE);
Udp.endPacket();
}

View File

@ -0,0 +1,137 @@
/*
Web client
This sketch connects to a website (http://www.google.com)
using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 18 Dec 2009
by David A. Mellis
modified 9 Apr 2012
by Tom Igoe, based on work by Adrian McEwen
*/
#include <SPI.h>
#include <Ethernet.h>
// Enter a MAC address for your controller below.
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)
char server[] = "www.google.com"; // name address for Google (using DNS)
// Set the static IP address to use if the DHCP fails to assign
IPAddress ip(192, 168, 0, 177);
IPAddress myDns(192, 168, 0, 1);
// Initialize the Ethernet client library
// with the IP address and port of the server
// that you want to connect to (port 80 is default for HTTP):
EthernetClient client;
// Variables to measure the speed
unsigned long beginMicros, endMicros;
unsigned long byteCount = 0;
bool printWebData = true; // set to false for better speed measurement
void setup() {
// You can use Ethernet.init(pin) to configure the CS pin
//Ethernet.init(10); // Most Arduino shields
//Ethernet.init(5); // MKR ETH shield
//Ethernet.init(0); // Teensy 2.0
//Ethernet.init(20); // Teensy++ 2.0
//Ethernet.init(15); // ESP8266 with Adafruit Featherwing Ethernet
//Ethernet.init(33); // ESP32 with Adafruit Featherwing Ethernet
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// start the Ethernet connection:
Serial.println("Initialize Ethernet with DHCP:");
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// Check for Ethernet hardware present
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
Serial.println("Ethernet shield was not found. Sorry, can't run without hardware. :(");
while (true) {
delay(1); // do nothing, no point running without Ethernet hardware
}
}
if (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable is not connected.");
}
// try to congifure using IP address instead of DHCP:
Ethernet.begin(mac, ip, myDns);
} else {
Serial.print(" DHCP assigned IP ");
Serial.println(Ethernet.localIP());
}
// give the Ethernet shield a second to initialize:
delay(1000);
Serial.print("connecting to ");
Serial.print(server);
Serial.println("...");
// if you get a connection, report back via serial:
if (client.connect(server, 80)) {
Serial.print("connected to ");
Serial.println(client.remoteIP());
// Make a HTTP request:
client.println("GET /search?q=arduino HTTP/1.1");
client.println("Host: www.google.com");
client.println("Connection: close");
client.println();
} else {
// if you didn't get a connection to the server:
Serial.println("connection failed");
}
beginMicros = micros();
}
void loop() {
// if there are incoming bytes available
// from the server, read them and print them:
int len = client.available();
if (len > 0) {
byte buffer[80];
if (len > 80) len = 80;
client.read(buffer, len);
if (printWebData) {
Serial.write(buffer, len); // show in the serial monitor (slows some boards)
}
byteCount = byteCount + len;
}
// if the server's disconnected, stop the client:
if (!client.connected()) {
endMicros = micros();
Serial.println();
Serial.println("disconnecting.");
client.stop();
Serial.print("Received ");
Serial.print(byteCount);
Serial.print(" bytes in ");
float seconds = (float)(endMicros - beginMicros) / 1000000.0;
Serial.print(seconds, 4);
float rate = (float)byteCount / seconds / 1000.0;
Serial.print(", rate = ");
Serial.print(rate);
Serial.print(" kbytes/second");
Serial.println();
// do nothing forevermore:
while (true) {
delay(1);
}
}
}

View File

@ -0,0 +1,130 @@
/*
Repeating Web client
This sketch connects to a a web server and makes a request
using a Wiznet Ethernet shield. You can use the Arduino Ethernet shield, or
the Adafruit Ethernet shield, either one will work, as long as it's got
a Wiznet Ethernet module on board.
This example uses DNS, by assigning the Ethernet client with a MAC address,
IP address, and DNS address.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 19 Apr 2012
by Tom Igoe
modified 21 Jan 2014
by Federico Vanzati
http://www.arduino.cc/en/Tutorial/WebClientRepeating
This code is in the public domain.
*/
#include <SPI.h>
#include <Ethernet.h>
// assign a MAC address for the ethernet controller.
// fill in your address here:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
// Set the static IP address to use if the DHCP fails to assign
IPAddress ip(192, 168, 0, 177);
IPAddress myDns(192, 168, 0, 1);
// initialize the library instance:
EthernetClient client;
char server[] = "www.arduino.cc"; // also change the Host line in httpRequest()
//IPAddress server(64,131,82,241);
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
const unsigned long postingInterval = 10*1000; // delay between updates, in milliseconds
void setup() {
// You can use Ethernet.init(pin) to configure the CS pin
//Ethernet.init(10); // Most Arduino shields
//Ethernet.init(5); // MKR ETH shield
//Ethernet.init(0); // Teensy 2.0
//Ethernet.init(20); // Teensy++ 2.0
//Ethernet.init(15); // ESP8266 with Adafruit Featherwing Ethernet
//Ethernet.init(33); // ESP32 with Adafruit Featherwing Ethernet
// start serial port:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// start the Ethernet connection:
Serial.println("Initialize Ethernet with DHCP:");
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// Check for Ethernet hardware present
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
Serial.println("Ethernet shield was not found. Sorry, can't run without hardware. :(");
while (true) {
delay(1); // do nothing, no point running without Ethernet hardware
}
}
if (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable is not connected.");
}
// try to congifure using IP address instead of DHCP:
Ethernet.begin(mac, ip, myDns);
Serial.print("My IP address: ");
Serial.println(Ethernet.localIP());
} else {
Serial.print(" DHCP assigned IP ");
Serial.println(Ethernet.localIP());
}
// give the Ethernet shield a second to initialize:
delay(1000);
}
void loop() {
// if there's incoming data from the net connection.
// send it out the serial port. This is for debugging
// purposes only:
if (client.available()) {
char c = client.read();
Serial.write(c);
}
// if ten seconds have passed since your last connection,
// then connect again and send data:
if (millis() - lastConnectionTime > postingInterval) {
httpRequest();
}
}
// this method makes a HTTP connection to the server:
void httpRequest() {
// close any connection before send a new request.
// This will free the socket on the WiFi shield
client.stop();
// if there's a successful connection:
if (client.connect(server, 80)) {
Serial.println("connecting...");
// send the HTTP GET request:
client.println("GET /latest.txt HTTP/1.1");
client.println("Host: www.arduino.cc");
client.println("User-Agent: arduino-ethernet");
client.println("Connection: close");
client.println();
// note the time that the connection was made:
lastConnectionTime = millis();
} else {
// if you couldn't make a connection:
Serial.println("connection failed");
}
}

View File

@ -0,0 +1,123 @@
/*
Web Server
A simple web server that shows the value of the analog input pins.
using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
* Analog inputs attached to pins A0 through A5 (optional)
created 18 Dec 2009
by David A. Mellis
modified 9 Apr 2012
by Tom Igoe
modified 02 Sept 2015
by Arturo Guadalupi
*/
#include <SPI.h>
#include <Ethernet.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
IPAddress ip(192, 168, 1, 177);
// Initialize the Ethernet server library
// with the IP address and port you want to use
// (port 80 is default for HTTP):
EthernetServer server(80);
void setup() {
// You can use Ethernet.init(pin) to configure the CS pin
//Ethernet.init(10); // Most Arduino shields
//Ethernet.init(5); // MKR ETH shield
//Ethernet.init(0); // Teensy 2.0
//Ethernet.init(20); // Teensy++ 2.0
//Ethernet.init(15); // ESP8266 with Adafruit Featherwing Ethernet
//Ethernet.init(33); // ESP32 with Adafruit Featherwing Ethernet
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
Serial.println("Ethernet WebServer Example");
// start the Ethernet connection and the server:
Ethernet.begin(mac, ip);
// Check for Ethernet hardware present
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
Serial.println("Ethernet shield was not found. Sorry, can't run without hardware. :(");
while (true) {
delay(1); // do nothing, no point running without Ethernet hardware
}
}
if (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable is not connected.");
}
// start the server
server.begin();
Serial.print("server is at ");
Serial.println(Ethernet.localIP());
}
void loop() {
// listen for incoming clients
EthernetClient client = server.available();
if (client) {
Serial.println("new client");
// an http request ends with a blank line
boolean currentLineIsBlank = true;
while (client.connected()) {
if (client.available()) {
char c = client.read();
Serial.write(c);
// if you've gotten to the end of the line (received a newline
// character) and the line is blank, the http request has ended,
// so you can send a reply
if (c == '\n' && currentLineIsBlank) {
// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println("Connection: close"); // the connection will be closed after completion of the response
client.println("Refresh: 5"); // refresh the page automatically every 5 sec
client.println();
client.println("<!DOCTYPE HTML>");
client.println("<html>");
// output the value of each analog input pin
for (int analogChannel = 0; analogChannel < 6; analogChannel++) {
int sensorReading = analogRead(analogChannel);
client.print("analog input ");
client.print(analogChannel);
client.print(" is ");
client.print(sensorReading);
client.println("<br />");
}
client.println("</html>");
break;
}
if (c == '\n') {
// you're starting a new line
currentLineIsBlank = true;
} else if (c != '\r') {
// you've gotten a character on the current line
currentLineIsBlank = false;
}
}
}
// give the web browser time to receive the data
delay(1);
// close the connection:
client.stop();
Serial.println("client disconnected");
}
}

View File

@ -0,0 +1,67 @@
#######################################
# Syntax Coloring Map For Ethernet
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
Ethernet KEYWORD1 Ethernet
EthernetClient KEYWORD1 EthernetClient
EthernetServer KEYWORD1 EthernetServer
IPAddress KEYWORD1 EthernetIPAddress
#######################################
# Methods and Functions (KEYWORD2)
#######################################
status KEYWORD2
connect KEYWORD2
write KEYWORD2
available KEYWORD2
availableForWrite KEYWORD2
read KEYWORD2
peek KEYWORD2
flush KEYWORD2
stop KEYWORD2
connected KEYWORD2
accept KEYWORD2
begin KEYWORD2
beginMulticast KEYWORD2
beginPacket KEYWORD2
endPacket KEYWORD2
parsePacket KEYWORD2
remoteIP KEYWORD2
remotePort KEYWORD2
getSocketNumber KEYWORD2
localIP KEYWORD2
localPort KEYWORD2
maintain KEYWORD2
linkStatus KEYWORD2
hardwareStatus KEYWORD2
MACAddress KEYWORD2
subnetMask KEYWORD2
gatewayIP KEYWORD2
dnsServerIP KEYWORD2
setMACAddress KEYWORD2
setLocalIP KEYWORD2
setSubnetMask KEYWORD2
setGatewayIP KEYWORD2
setDnsServerIP KEYWORD2
setRetransmissionTimeout KEYWORD2
setRetransmissionCount KEYWORD2
setConnectionTimeout KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
EthernetLinkStatus LITERAL1
Unknown LITERAL1
LinkON LITERAL1
LinkOFF LITERAL1
EthernetHardwareStatus LITERAL1
EthernetNoHardware LITERAL1
EthernetW5100 LITERAL1
EthernetW5200 LITERAL1
EthernetW5500 LITERAL1

View File

@ -0,0 +1,10 @@
name=Ethernet
version=2.0.0
author=Various (see AUTHORS file for details)
maintainer=Paul Stoffregen <paul@pjrc.com>, Arduino <info@arduino.cc>
sentence=Enables network connection (local and Internet) using the Arduino Ethernet Board or Shield.
paragraph=With this library you can use the Arduino Ethernet (shield or board) to connect to Internet. The library provides both Client and server functionalities. The library permits you to connect to a local network also with DHCP and to resolve DNS.
category=Communication
url=http://www.arduino.cc/en/Reference/Ethernet
architectures=*
includes=Ethernet.h

View File

@ -0,0 +1,433 @@
// DHCP Library v0.3 - April 25, 2009
// Author: Jordan Terrell - blog.jordanterrell.com
#include <Arduino.h>
#include "Ethernet.h"
#include "Dhcp.h"
#include "utility/w5100.h"
int DhcpClass::beginWithDHCP(uint8_t *mac, unsigned long timeout, unsigned long responseTimeout)
{
_dhcpLeaseTime=0;
_dhcpT1=0;
_dhcpT2=0;
_timeout = timeout;
_responseTimeout = responseTimeout;
// zero out _dhcpMacAddr
memset(_dhcpMacAddr, 0, 6);
reset_DHCP_lease();
memcpy((void*)_dhcpMacAddr, (void*)mac, 6);
_dhcp_state = STATE_DHCP_START;
return request_DHCP_lease();
}
void DhcpClass::reset_DHCP_lease()
{
// zero out _dhcpSubnetMask, _dhcpGatewayIp, _dhcpLocalIp, _dhcpDhcpServerIp, _dhcpDnsServerIp
memset(_dhcpLocalIp, 0, 20);
}
//return:0 on error, 1 if request is sent and response is received
int DhcpClass::request_DHCP_lease()
{
uint8_t messageType = 0;
// Pick an initial transaction ID
_dhcpTransactionId = random(1UL, 2000UL);
_dhcpInitialTransactionId = _dhcpTransactionId;
_dhcpUdpSocket.stop();
if (_dhcpUdpSocket.begin(DHCP_CLIENT_PORT) == 0) {
// Couldn't get a socket
return 0;
}
presend_DHCP();
int result = 0;
unsigned long startTime = millis();
while (_dhcp_state != STATE_DHCP_LEASED) {
if (_dhcp_state == STATE_DHCP_START) {
_dhcpTransactionId++;
send_DHCP_MESSAGE(DHCP_DISCOVER, ((millis() - startTime) / 1000));
_dhcp_state = STATE_DHCP_DISCOVER;
} else if (_dhcp_state == STATE_DHCP_REREQUEST) {
_dhcpTransactionId++;
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime)/1000));
_dhcp_state = STATE_DHCP_REQUEST;
} else if (_dhcp_state == STATE_DHCP_DISCOVER) {
uint32_t respId;
messageType = parseDHCPResponse(_responseTimeout, respId);
if (messageType == DHCP_OFFER) {
// We'll use the transaction ID that the offer came with,
// rather than the one we were up to
_dhcpTransactionId = respId;
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime) / 1000));
_dhcp_state = STATE_DHCP_REQUEST;
}
} else if (_dhcp_state == STATE_DHCP_REQUEST) {
uint32_t respId;
messageType = parseDHCPResponse(_responseTimeout, respId);
if (messageType == DHCP_ACK) {
_dhcp_state = STATE_DHCP_LEASED;
result = 1;
//use default lease time if we didn't get it
if (_dhcpLeaseTime == 0) {
_dhcpLeaseTime = DEFAULT_LEASE;
}
// Calculate T1 & T2 if we didn't get it
if (_dhcpT1 == 0) {
// T1 should be 50% of _dhcpLeaseTime
_dhcpT1 = _dhcpLeaseTime >> 1;
}
if (_dhcpT2 == 0) {
// T2 should be 87.5% (7/8ths) of _dhcpLeaseTime
_dhcpT2 = _dhcpLeaseTime - (_dhcpLeaseTime >> 3);
}
_renewInSec = _dhcpT1;
_rebindInSec = _dhcpT2;
} else if (messageType == DHCP_NAK) {
_dhcp_state = STATE_DHCP_START;
}
}
if (messageType == 255) {
messageType = 0;
_dhcp_state = STATE_DHCP_START;
}
if (result != 1 && ((millis() - startTime) > _timeout))
break;
}
// We're done with the socket now
_dhcpUdpSocket.stop();
_dhcpTransactionId++;
_lastCheckLeaseMillis = millis();
return result;
}
void DhcpClass::presend_DHCP()
{
}
void DhcpClass::send_DHCP_MESSAGE(uint8_t messageType, uint16_t secondsElapsed)
{
uint8_t buffer[32];
memset(buffer, 0, 32);
IPAddress dest_addr(255, 255, 255, 255); // Broadcast address
if (_dhcpUdpSocket.beginPacket(dest_addr, DHCP_SERVER_PORT) == -1) {
//Serial.printf("DHCP transmit error\n");
// FIXME Need to return errors
return;
}
buffer[0] = DHCP_BOOTREQUEST; // op
buffer[1] = DHCP_HTYPE10MB; // htype
buffer[2] = DHCP_HLENETHERNET; // hlen
buffer[3] = DHCP_HOPS; // hops
// xid
unsigned long xid = htonl(_dhcpTransactionId);
memcpy(buffer + 4, &(xid), 4);
// 8, 9 - seconds elapsed
buffer[8] = ((secondsElapsed & 0xff00) >> 8);
buffer[9] = (secondsElapsed & 0x00ff);
// flags
unsigned short flags = htons(DHCP_FLAGSBROADCAST);
memcpy(buffer + 10, &(flags), 2);
// ciaddr: already zeroed
// yiaddr: already zeroed
// siaddr: already zeroed
// giaddr: already zeroed
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 28);
memset(buffer, 0, 32); // clear local buffer
memcpy(buffer, _dhcpMacAddr, 6); // chaddr
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 16);
memset(buffer, 0, 32); // clear local buffer
// leave zeroed out for sname && file
// put in W5100 transmit buffer x 6 (192 bytes)
for(int i = 0; i < 6; i++) {
_dhcpUdpSocket.write(buffer, 32);
}
// OPT - Magic Cookie
buffer[0] = (uint8_t)((MAGIC_COOKIE >> 24)& 0xFF);
buffer[1] = (uint8_t)((MAGIC_COOKIE >> 16)& 0xFF);
buffer[2] = (uint8_t)((MAGIC_COOKIE >> 8)& 0xFF);
buffer[3] = (uint8_t)(MAGIC_COOKIE& 0xFF);
// OPT - message type
buffer[4] = dhcpMessageType;
buffer[5] = 0x01;
buffer[6] = messageType; //DHCP_REQUEST;
// OPT - client identifier
buffer[7] = dhcpClientIdentifier;
buffer[8] = 0x07;
buffer[9] = 0x01;
memcpy(buffer + 10, _dhcpMacAddr, 6);
// OPT - host name
buffer[16] = hostName;
buffer[17] = strlen(HOST_NAME) + 6; // length of hostname + last 3 bytes of mac address
strcpy((char*)&(buffer[18]), HOST_NAME);
printByte((char*)&(buffer[24]), _dhcpMacAddr[3]);
printByte((char*)&(buffer[26]), _dhcpMacAddr[4]);
printByte((char*)&(buffer[28]), _dhcpMacAddr[5]);
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 30);
if (messageType == DHCP_REQUEST) {
buffer[0] = dhcpRequestedIPaddr;
buffer[1] = 0x04;
buffer[2] = _dhcpLocalIp[0];
buffer[3] = _dhcpLocalIp[1];
buffer[4] = _dhcpLocalIp[2];
buffer[5] = _dhcpLocalIp[3];
buffer[6] = dhcpServerIdentifier;
buffer[7] = 0x04;
buffer[8] = _dhcpDhcpServerIp[0];
buffer[9] = _dhcpDhcpServerIp[1];
buffer[10] = _dhcpDhcpServerIp[2];
buffer[11] = _dhcpDhcpServerIp[3];
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 12);
}
buffer[0] = dhcpParamRequest;
buffer[1] = 0x06;
buffer[2] = subnetMask;
buffer[3] = routersOnSubnet;
buffer[4] = dns;
buffer[5] = domainName;
buffer[6] = dhcpT1value;
buffer[7] = dhcpT2value;
buffer[8] = endOption;
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 9);
_dhcpUdpSocket.endPacket();
}
uint8_t DhcpClass::parseDHCPResponse(unsigned long responseTimeout, uint32_t& transactionId)
{
uint8_t type = 0;
uint8_t opt_len = 0;
unsigned long startTime = millis();
while (_dhcpUdpSocket.parsePacket() <= 0) {
if ((millis() - startTime) > responseTimeout) {
return 255;
}
delay(50);
}
// start reading in the packet
RIP_MSG_FIXED fixedMsg;
_dhcpUdpSocket.read((uint8_t*)&fixedMsg, sizeof(RIP_MSG_FIXED));
if (fixedMsg.op == DHCP_BOOTREPLY && _dhcpUdpSocket.remotePort() == DHCP_SERVER_PORT) {
transactionId = ntohl(fixedMsg.xid);
if (memcmp(fixedMsg.chaddr, _dhcpMacAddr, 6) != 0 ||
(transactionId < _dhcpInitialTransactionId) ||
(transactionId > _dhcpTransactionId)) {
// Need to read the rest of the packet here regardless
_dhcpUdpSocket.flush(); // FIXME
return 0;
}
memcpy(_dhcpLocalIp, fixedMsg.yiaddr, 4);
// Skip to the option part
_dhcpUdpSocket.read((uint8_t *)NULL, 240 - (int)sizeof(RIP_MSG_FIXED));
while (_dhcpUdpSocket.available() > 0) {
switch (_dhcpUdpSocket.read()) {
case endOption :
break;
case padOption :
break;
case dhcpMessageType :
opt_len = _dhcpUdpSocket.read();
type = _dhcpUdpSocket.read();
break;
case subnetMask :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpSubnetMask, 4);
break;
case routersOnSubnet :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpGatewayIp, 4);
_dhcpUdpSocket.read((uint8_t *)NULL, opt_len - 4);
break;
case dns :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpDnsServerIp, 4);
_dhcpUdpSocket.read((uint8_t *)NULL, opt_len - 4);
break;
case dhcpServerIdentifier :
opt_len = _dhcpUdpSocket.read();
if ( IPAddress(_dhcpDhcpServerIp) == IPAddress((uint32_t)0) ||
IPAddress(_dhcpDhcpServerIp) == _dhcpUdpSocket.remoteIP() ) {
_dhcpUdpSocket.read(_dhcpDhcpServerIp, sizeof(_dhcpDhcpServerIp));
} else {
// Skip over the rest of this option
_dhcpUdpSocket.read((uint8_t *)NULL, opt_len);
}
break;
case dhcpT1value :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpT1, sizeof(_dhcpT1));
_dhcpT1 = ntohl(_dhcpT1);
break;
case dhcpT2value :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpT2, sizeof(_dhcpT2));
_dhcpT2 = ntohl(_dhcpT2);
break;
case dhcpIPaddrLeaseTime :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpLeaseTime, sizeof(_dhcpLeaseTime));
_dhcpLeaseTime = ntohl(_dhcpLeaseTime);
_renewInSec = _dhcpLeaseTime;
break;
default :
opt_len = _dhcpUdpSocket.read();
// Skip over the rest of this option
_dhcpUdpSocket.read((uint8_t *)NULL, opt_len);
break;
}
}
}
// Need to skip to end of the packet regardless here
_dhcpUdpSocket.flush(); // FIXME
return type;
}
/*
returns:
0/DHCP_CHECK_NONE: nothing happened
1/DHCP_CHECK_RENEW_FAIL: renew failed
2/DHCP_CHECK_RENEW_OK: renew success
3/DHCP_CHECK_REBIND_FAIL: rebind fail
4/DHCP_CHECK_REBIND_OK: rebind success
*/
int DhcpClass::checkLease()
{
int rc = DHCP_CHECK_NONE;
unsigned long now = millis();
unsigned long elapsed = now - _lastCheckLeaseMillis;
// if more then one sec passed, reduce the counters accordingly
if (elapsed >= 1000) {
// set the new timestamps
_lastCheckLeaseMillis = now - (elapsed % 1000);
elapsed = elapsed / 1000;
// decrease the counters by elapsed seconds
// we assume that the cycle time (elapsed) is fairly constant
// if the remainder is less than cycle time * 2
// do it early instead of late
if (_renewInSec < elapsed * 2) {
_renewInSec = 0;
} else {
_renewInSec -= elapsed;
}
if (_rebindInSec < elapsed * 2) {
_rebindInSec = 0;
} else {
_rebindInSec -= elapsed;
}
}
// if we have a lease but should renew, do it
if (_renewInSec == 0 &&_dhcp_state == STATE_DHCP_LEASED) {
_dhcp_state = STATE_DHCP_REREQUEST;
rc = 1 + request_DHCP_lease();
}
// if we have a lease or is renewing but should bind, do it
if (_rebindInSec == 0 && (_dhcp_state == STATE_DHCP_LEASED ||
_dhcp_state == STATE_DHCP_START)) {
// this should basically restart completely
_dhcp_state = STATE_DHCP_START;
reset_DHCP_lease();
rc = 3 + request_DHCP_lease();
}
return rc;
}
IPAddress DhcpClass::getLocalIp()
{
return IPAddress(_dhcpLocalIp);
}
IPAddress DhcpClass::getSubnetMask()
{
return IPAddress(_dhcpSubnetMask);
}
IPAddress DhcpClass::getGatewayIp()
{
return IPAddress(_dhcpGatewayIp);
}
IPAddress DhcpClass::getDhcpServerIp()
{
return IPAddress(_dhcpDhcpServerIp);
}
IPAddress DhcpClass::getDnsServerIp()
{
return IPAddress(_dhcpDnsServerIp);
}
void DhcpClass::printByte(char * buf, uint8_t n )
{
char *str = &buf[1];
buf[0]='0';
do {
unsigned long m = n;
n /= 16;
char c = m - 16 * n;
*str-- = c < 10 ? c + '0' : c + 'A' - 10;
} while(n);
}

View File

@ -0,0 +1,137 @@
// DHCP Library v0.3 - April 25, 2009
// Author: Jordan Terrell - blog.jordanterrell.com
#ifndef Dhcp_h
#define Dhcp_h
/* DHCP state machine. */
#define STATE_DHCP_START 0
#define STATE_DHCP_DISCOVER 1
#define STATE_DHCP_REQUEST 2
#define STATE_DHCP_LEASED 3
#define STATE_DHCP_REREQUEST 4
#define STATE_DHCP_RELEASE 5
#define DHCP_FLAGSBROADCAST 0x8000
/* UDP port numbers for DHCP */
#define DHCP_SERVER_PORT 67 /* from server to client */
#define DHCP_CLIENT_PORT 68 /* from client to server */
/* DHCP message OP code */
#define DHCP_BOOTREQUEST 1
#define DHCP_BOOTREPLY 2
/* DHCP message type */
#define DHCP_DISCOVER 1
#define DHCP_OFFER 2
#define DHCP_REQUEST 3
#define DHCP_DECLINE 4
#define DHCP_ACK 5
#define DHCP_NAK 6
#define DHCP_RELEASE 7
#define DHCP_INFORM 8
#define DHCP_HTYPE10MB 1
#define DHCP_HTYPE100MB 2
#define DHCP_HLENETHERNET 6
#define DHCP_HOPS 0
#define DHCP_SECS 0
#define MAGIC_COOKIE 0x63825363
#define MAX_DHCP_OPT 16
#define HOST_NAME "WIZnet"
#define DEFAULT_LEASE (900) //default lease time in seconds
#define DHCP_CHECK_NONE (0)
#define DHCP_CHECK_RENEW_FAIL (1)
#define DHCP_CHECK_RENEW_OK (2)
#define DHCP_CHECK_REBIND_FAIL (3)
#define DHCP_CHECK_REBIND_OK (4)
enum
{
padOption = 0,
subnetMask = 1,
timerOffset = 2,
routersOnSubnet = 3,
/* timeServer = 4,
nameServer = 5,*/
dns = 6,
/*logServer = 7,
cookieServer = 8,
lprServer = 9,
impressServer = 10,
resourceLocationServer = 11,*/
hostName = 12,
/*bootFileSize = 13,
meritDumpFile = 14,*/
domainName = 15,
/*swapServer = 16,
rootPath = 17,
extentionsPath = 18,
IPforwarding = 19,
nonLocalSourceRouting = 20,
policyFilter = 21,
maxDgramReasmSize = 22,
defaultIPTTL = 23,
pathMTUagingTimeout = 24,
pathMTUplateauTable = 25,
ifMTU = 26,
allSubnetsLocal = 27,
broadcastAddr = 28,
performMaskDiscovery = 29,
maskSupplier = 30,
performRouterDiscovery = 31,
routerSolicitationAddr = 32,
staticRoute = 33,
trailerEncapsulation = 34,
arpCacheTimeout = 35,
ethernetEncapsulation = 36,
tcpDefaultTTL = 37,
tcpKeepaliveInterval = 38,
tcpKeepaliveGarbage = 39,
nisDomainName = 40,
nisServers = 41,
ntpServers = 42,
vendorSpecificInfo = 43,
netBIOSnameServer = 44,
netBIOSdgramDistServer = 45,
netBIOSnodeType = 46,
netBIOSscope = 47,
xFontServer = 48,
xDisplayManager = 49,*/
dhcpRequestedIPaddr = 50,
dhcpIPaddrLeaseTime = 51,
/*dhcpOptionOverload = 52,*/
dhcpMessageType = 53,
dhcpServerIdentifier = 54,
dhcpParamRequest = 55,
/*dhcpMsg = 56,
dhcpMaxMsgSize = 57,*/
dhcpT1value = 58,
dhcpT2value = 59,
/*dhcpClassIdentifier = 60,*/
dhcpClientIdentifier = 61,
endOption = 255
};
typedef struct _RIP_MSG_FIXED
{
uint8_t op;
uint8_t htype;
uint8_t hlen;
uint8_t hops;
uint32_t xid;
uint16_t secs;
uint16_t flags;
uint8_t ciaddr[4];
uint8_t yiaddr[4];
uint8_t siaddr[4];
uint8_t giaddr[4];
uint8_t chaddr[6];
} RIP_MSG_FIXED;
#endif

View File

@ -0,0 +1,354 @@
// Arduino DNS client for WizNet5100-based Ethernet shield
// (c) Copyright 2009-2010 MCQN Ltd.
// Released under Apache License, version 2.0
#include <Arduino.h>
#include "Ethernet.h"
#include "Dns.h"
#include "utility/w5100.h"
#define SOCKET_NONE 255
// Various flags and header field values for a DNS message
#define UDP_HEADER_SIZE 8
#define DNS_HEADER_SIZE 12
#define TTL_SIZE 4
#define QUERY_FLAG (0)
#define RESPONSE_FLAG (1<<15)
#define QUERY_RESPONSE_MASK (1<<15)
#define OPCODE_STANDARD_QUERY (0)
#define OPCODE_INVERSE_QUERY (1<<11)
#define OPCODE_STATUS_REQUEST (2<<11)
#define OPCODE_MASK (15<<11)
#define AUTHORITATIVE_FLAG (1<<10)
#define TRUNCATION_FLAG (1<<9)
#define RECURSION_DESIRED_FLAG (1<<8)
#define RECURSION_AVAILABLE_FLAG (1<<7)
#define RESP_NO_ERROR (0)
#define RESP_FORMAT_ERROR (1)
#define RESP_SERVER_FAILURE (2)
#define RESP_NAME_ERROR (3)
#define RESP_NOT_IMPLEMENTED (4)
#define RESP_REFUSED (5)
#define RESP_MASK (15)
#define TYPE_A (0x0001)
#define CLASS_IN (0x0001)
#define LABEL_COMPRESSION_MASK (0xC0)
// Port number that DNS servers listen on
#define DNS_PORT 53
// Possible return codes from ProcessResponse
#define SUCCESS 1
#define TIMED_OUT -1
#define INVALID_SERVER -2
#define TRUNCATED -3
#define INVALID_RESPONSE -4
void DNSClient::begin(const IPAddress& aDNSServer)
{
iDNSServer = aDNSServer;
iRequestId = 0;
}
int DNSClient::inet_aton(const char* address, IPAddress& result)
{
uint16_t acc = 0; // Accumulator
uint8_t dots = 0;
while (*address) {
char c = *address++;
if (c >= '0' && c <= '9') {
acc = acc * 10 + (c - '0');
if (acc > 255) {
// Value out of [0..255] range
return 0;
}
} else if (c == '.') {
if (dots == 3) {
// Too much dots (there must be 3 dots)
return 0;
}
result[dots++] = acc;
acc = 0;
} else {
// Invalid char
return 0;
}
}
if (dots != 3) {
// Too few dots (there must be 3 dots)
return 0;
}
result[3] = acc;
return 1;
}
int DNSClient::getHostByName(const char* aHostname, IPAddress& aResult, uint16_t timeout)
{
int ret = 0;
// See if it's a numeric IP address
if (inet_aton(aHostname, aResult)) {
// It is, our work here is done
return 1;
}
// Check we've got a valid DNS server to use
if (iDNSServer == INADDR_NONE) {
return INVALID_SERVER;
}
// Find a socket to use
if (iUdp.begin(1024+(millis() & 0xF)) == 1) {
// Try up to three times
int retries = 0;
// while ((retries < 3) && (ret <= 0)) {
// Send DNS request
ret = iUdp.beginPacket(iDNSServer, DNS_PORT);
if (ret != 0) {
// Now output the request data
ret = BuildRequest(aHostname);
if (ret != 0) {
// And finally send the request
ret = iUdp.endPacket();
if (ret != 0) {
// Now wait for a response
int wait_retries = 0;
ret = TIMED_OUT;
while ((wait_retries < 3) && (ret == TIMED_OUT)) {
ret = ProcessResponse(timeout, aResult);
wait_retries++;
}
}
}
}
retries++;
//}
// We're done with the socket now
iUdp.stop();
}
return ret;
}
uint16_t DNSClient::BuildRequest(const char* aName)
{
// Build header
// 1 1 1 1 1 1
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | ID |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// |QR| Opcode |AA|TC|RD|RA| Z | RCODE |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | QDCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | ANCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | NSCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | ARCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// As we only support one request at a time at present, we can simplify
// some of this header
iRequestId = millis(); // generate a random ID
uint16_t twoByteBuffer;
// FIXME We should also check that there's enough space available to write to, rather
// FIXME than assume there's enough space (as the code does at present)
iUdp.write((uint8_t*)&iRequestId, sizeof(iRequestId));
twoByteBuffer = htons(QUERY_FLAG | OPCODE_STANDARD_QUERY | RECURSION_DESIRED_FLAG);
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
twoByteBuffer = htons(1); // One question record
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
twoByteBuffer = 0; // Zero answer records
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
// and zero additional records
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
// Build question
const char* start =aName;
const char* end =start;
uint8_t len;
// Run through the name being requested
while (*end) {
// Find out how long this section of the name is
end = start;
while (*end && (*end != '.') ) {
end++;
}
if (end-start > 0) {
// Write out the size of this section
len = end-start;
iUdp.write(&len, sizeof(len));
// And then write out the section
iUdp.write((uint8_t*)start, end-start);
}
start = end+1;
}
// We've got to the end of the question name, so
// terminate it with a zero-length section
len = 0;
iUdp.write(&len, sizeof(len));
// Finally the type and class of question
twoByteBuffer = htons(TYPE_A);
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
twoByteBuffer = htons(CLASS_IN); // Internet class of question
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
// Success! Everything buffered okay
return 1;
}
uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
{
uint32_t startTime = millis();
// Wait for a response packet
while (iUdp.parsePacket() <= 0) {
if ((millis() - startTime) > aTimeout) {
return TIMED_OUT;
}
delay(50);
}
// We've had a reply!
// Read the UDP header
//uint8_t header[DNS_HEADER_SIZE]; // Enough space to reuse for the DNS header
union {
uint8_t byte[DNS_HEADER_SIZE]; // Enough space to reuse for the DNS header
uint16_t word[DNS_HEADER_SIZE/2];
} header;
// Check that it's a response from the right server and the right port
if ( (iDNSServer != iUdp.remoteIP()) || (iUdp.remotePort() != DNS_PORT) ) {
// It's not from who we expected
return INVALID_SERVER;
}
// Read through the rest of the response
if (iUdp.available() < DNS_HEADER_SIZE) {
return TRUNCATED;
}
iUdp.read(header.byte, DNS_HEADER_SIZE);
uint16_t header_flags = htons(header.word[1]);
// Check that it's a response to this request
if ((iRequestId != (header.word[0])) ||
((header_flags & QUERY_RESPONSE_MASK) != (uint16_t)RESPONSE_FLAG) ) {
// Mark the entire packet as read
iUdp.flush(); // FIXME
return INVALID_RESPONSE;
}
// Check for any errors in the response (or in our request)
// although we don't do anything to get round these
if ( (header_flags & TRUNCATION_FLAG) || (header_flags & RESP_MASK) ) {
// Mark the entire packet as read
iUdp.flush(); // FIXME
return -5; //INVALID_RESPONSE;
}
// And make sure we've got (at least) one answer
uint16_t answerCount = htons(header.word[3]);
if (answerCount == 0) {
// Mark the entire packet as read
iUdp.flush(); // FIXME
return -6; //INVALID_RESPONSE;
}
// Skip over any questions
for (uint16_t i=0; i < htons(header.word[2]); i++) {
// Skip over the name
uint8_t len;
do {
iUdp.read(&len, sizeof(len));
if (len > 0) {
// Don't need to actually read the data out for the string, just
// advance ptr to beyond it
iUdp.read((uint8_t *)NULL, (size_t)len);
}
} while (len != 0);
// Now jump over the type and class
iUdp.read((uint8_t *)NULL, 4);
}
// Now we're up to the bit we're interested in, the answer
// There might be more than one answer (although we'll just use the first
// type A answer) and some authority and additional resource records but
// we're going to ignore all of them.
for (uint16_t i=0; i < answerCount; i++) {
// Skip the name
uint8_t len;
do {
iUdp.read(&len, sizeof(len));
if ((len & LABEL_COMPRESSION_MASK) == 0) {
// It's just a normal label
if (len > 0) {
// And it's got a length
// Don't need to actually read the data out for the string,
// just advance ptr to beyond it
iUdp.read((uint8_t *)NULL, len);
}
} else {
// This is a pointer to a somewhere else in the message for the
// rest of the name. We don't care about the name, and RFC1035
// says that a name is either a sequence of labels ended with a
// 0 length octet or a pointer or a sequence of labels ending in
// a pointer. Either way, when we get here we're at the end of
// the name
// Skip over the pointer
iUdp.read((uint8_t *)NULL, 1); // we don't care about the byte
// And set len so that we drop out of the name loop
len = 0;
}
} while (len != 0);
// Check the type and class
uint16_t answerType;
uint16_t answerClass;
iUdp.read((uint8_t*)&answerType, sizeof(answerType));
iUdp.read((uint8_t*)&answerClass, sizeof(answerClass));
// Ignore the Time-To-Live as we don't do any caching
iUdp.read((uint8_t *)NULL, TTL_SIZE); // don't care about the returned bytes
// And read out the length of this answer
// Don't need header_flags anymore, so we can reuse it here
iUdp.read((uint8_t*)&header_flags, sizeof(header_flags));
if ( (htons(answerType) == TYPE_A) && (htons(answerClass) == CLASS_IN) ) {
if (htons(header_flags) != 4) {
// It's a weird size
// Mark the entire packet as read
iUdp.flush(); // FIXME
return -9;//INVALID_RESPONSE;
}
// FIXME: seeems to lock up here on ESP8266, but why??
iUdp.read(aAddress.raw_address(), 4);
return SUCCESS;
} else {
// This isn't an answer type we're after, move onto the next one
iUdp.read((uint8_t *)NULL, htons(header_flags));
}
}
// Mark the entire packet as read
iUdp.flush(); // FIXME
// If we get here then we haven't found an answer
return -10; //INVALID_RESPONSE;
}

View File

@ -0,0 +1,40 @@
// Arduino DNS client for WizNet5100-based Ethernet shield
// (c) Copyright 2009-2010 MCQN Ltd.
// Released under Apache License, version 2.0
#ifndef DNSClient_h
#define DNSClient_h
#include "Ethernet.h"
class DNSClient
{
public:
void begin(const IPAddress& aDNSServer);
/** Convert a numeric IP address string into a four-byte IP address.
@param aIPAddrString IP address to convert
@param aResult IPAddress structure to store the returned IP address
@result 1 if aIPAddrString was successfully converted to an IP address,
else error code
*/
int inet_aton(const char *aIPAddrString, IPAddress& aResult);
/** Resolve the given hostname to an IP address.
@param aHostname Name to be resolved
@param aResult IPAddress structure to store the returned IP address
@result 1 if aIPAddrString was successfully converted to an IP address,
else error code
*/
int getHostByName(const char* aHostname, IPAddress& aResult, uint16_t timeout=5000);
protected:
uint16_t BuildRequest(const char* aName);
uint16_t ProcessResponse(uint16_t aTimeout, IPAddress& aAddress);
IPAddress iDNSServer;
uint16_t iRequestId;
EthernetUDP iUdp;
};
#endif

View File

@ -0,0 +1,242 @@
/* Copyright 2018 Paul Stoffregen
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this
* software and associated documentation files (the "Software"), to deal in the Software
* without restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "Ethernet.h"
#include "utility/w5100.h"
#include "Dhcp.h"
IPAddress EthernetClass::_dnsServerAddress;
DhcpClass* EthernetClass::_dhcp = NULL;
int EthernetClass::begin(uint8_t *mac, unsigned long timeout, unsigned long responseTimeout)
{
static DhcpClass s_dhcp;
_dhcp = &s_dhcp;
// Initialise the basic info
if (W5100.init() == 0) return 0;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setMACAddress(mac);
W5100.setIPAddress(IPAddress(0,0,0,0).raw_address());
SPI.endTransaction();
// Now try to get our config info from a DHCP server
int ret = _dhcp->beginWithDHCP(mac, timeout, responseTimeout);
if (ret == 1) {
// We've successfully found a DHCP server and got our configuration
// info, so set things accordingly
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setIPAddress(_dhcp->getLocalIp().raw_address());
W5100.setGatewayIp(_dhcp->getGatewayIp().raw_address());
W5100.setSubnetMask(_dhcp->getSubnetMask().raw_address());
SPI.endTransaction();
_dnsServerAddress = _dhcp->getDnsServerIp();
socketPortRand(micros());
}
return ret;
}
void EthernetClass::begin(uint8_t *mac, IPAddress ip)
{
// Assume the DNS server will be the machine on the same network as the local IP
// but with last octet being '1'
IPAddress dns = ip;
dns[3] = 1;
begin(mac, ip, dns);
}
void EthernetClass::begin(uint8_t *mac, IPAddress ip, IPAddress dns)
{
// Assume the gateway will be the machine on the same network as the local IP
// but with last octet being '1'
IPAddress gateway = ip;
gateway[3] = 1;
begin(mac, ip, dns, gateway);
}
void EthernetClass::begin(uint8_t *mac, IPAddress ip, IPAddress dns, IPAddress gateway)
{
IPAddress subnet(255, 255, 255, 0);
begin(mac, ip, dns, gateway, subnet);
}
void EthernetClass::begin(uint8_t *mac, IPAddress ip, IPAddress dns, IPAddress gateway, IPAddress subnet)
{
if (W5100.init() == 0) return;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setMACAddress(mac);
#if ARDUINO > 106 || TEENSYDUINO > 121
W5100.setIPAddress(ip._address.bytes);
W5100.setGatewayIp(gateway._address.bytes);
W5100.setSubnetMask(subnet._address.bytes);
#else
W5100.setIPAddress(ip._address);
W5100.setGatewayIp(gateway._address);
W5100.setSubnetMask(subnet._address);
#endif
SPI.endTransaction();
_dnsServerAddress = dns;
}
void EthernetClass::init(uint8_t sspin)
{
W5100.setSS(sspin);
}
EthernetLinkStatus EthernetClass::linkStatus()
{
switch (W5100.getLinkStatus()) {
case UNKNOWN: return Unknown;
case LINK_ON: return LinkON;
case LINK_OFF: return LinkOFF;
default: return Unknown;
}
}
EthernetHardwareStatus EthernetClass::hardwareStatus()
{
switch (W5100.getChip()) {
case 51: return EthernetW5100;
case 52: return EthernetW5200;
case 55: return EthernetW5500;
default: return EthernetNoHardware;
}
}
int EthernetClass::maintain()
{
int rc = DHCP_CHECK_NONE;
if (_dhcp != NULL) {
// we have a pointer to dhcp, use it
rc = _dhcp->checkLease();
switch (rc) {
case DHCP_CHECK_NONE:
//nothing done
break;
case DHCP_CHECK_RENEW_OK:
case DHCP_CHECK_REBIND_OK:
//we might have got a new IP.
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setIPAddress(_dhcp->getLocalIp().raw_address());
W5100.setGatewayIp(_dhcp->getGatewayIp().raw_address());
W5100.setSubnetMask(_dhcp->getSubnetMask().raw_address());
SPI.endTransaction();
_dnsServerAddress = _dhcp->getDnsServerIp();
break;
default:
//this is actually an error, it will retry though
break;
}
}
return rc;
}
void EthernetClass::MACAddress(uint8_t *mac_address)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.getMACAddress(mac_address);
SPI.endTransaction();
}
IPAddress EthernetClass::localIP()
{
IPAddress ret;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.getIPAddress(ret.raw_address());
SPI.endTransaction();
return ret;
}
IPAddress EthernetClass::subnetMask()
{
IPAddress ret;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.getSubnetMask(ret.raw_address());
SPI.endTransaction();
return ret;
}
IPAddress EthernetClass::gatewayIP()
{
IPAddress ret;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.getGatewayIp(ret.raw_address());
SPI.endTransaction();
return ret;
}
void EthernetClass::setMACAddress(const uint8_t *mac_address)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setMACAddress(mac_address);
SPI.endTransaction();
}
void EthernetClass::setLocalIP(const IPAddress local_ip)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
IPAddress ip = local_ip;
W5100.setIPAddress(ip.raw_address());
SPI.endTransaction();
}
void EthernetClass::setSubnetMask(const IPAddress subnet)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
IPAddress ip = subnet;
W5100.setSubnetMask(ip.raw_address());
SPI.endTransaction();
}
void EthernetClass::setGatewayIP(const IPAddress gateway)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
IPAddress ip = gateway;
W5100.setGatewayIp(ip.raw_address());
SPI.endTransaction();
}
void EthernetClass::setRetransmissionTimeout(uint16_t milliseconds)
{
if (milliseconds > 6553) milliseconds = 6553;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setRetransmissionTime(milliseconds * 10);
SPI.endTransaction();
}
void EthernetClass::setRetransmissionCount(uint8_t num)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setRetransmissionCount(num);
SPI.endTransaction();
}
EthernetClass Ethernet;

View File

@ -0,0 +1,322 @@
/* Copyright 2018 Paul Stoffregen
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this
* software and associated documentation files (the "Software"), to deal in the Software
* without restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef ethernet_h_
#define ethernet_h_
// All symbols exposed to Arduino sketches are contained in this header file
//
// Older versions had much of this stuff in EthernetClient.h, EthernetServer.h,
// and socket.h. Including headers in different order could cause trouble, so
// these "friend" classes are now defined in the same header file. socket.h
// was removed to avoid possible conflict with the C library header files.
// Configure the maximum number of sockets to support. W5100 chips can have
// up to 4 sockets. W5200 & W5500 can have up to 8 sockets. Several bytes
// of RAM are used for each socket. Reducing the maximum can save RAM, but
// you are limited to fewer simultaneous connections.
#if defined(RAMEND) && defined(RAMSTART) && ((RAMEND - RAMSTART) <= 2048)
#define MAX_SOCK_NUM 4
#else
#define MAX_SOCK_NUM 8
#endif
// By default, each socket uses 2K buffers inside the Wiznet chip. If
// MAX_SOCK_NUM is set to fewer than the chip's maximum, uncommenting
// this will use larger buffers within the Wiznet chip. Large buffers
// can really help with UDP protocols like Artnet. In theory larger
// buffers should allow faster TCP over high-latency links, but this
// does not always seem to work in practice (maybe Wiznet bugs?)
//#define ETHERNET_LARGE_BUFFERS
#include <Arduino.h>
#include "Client.h"
#include "Server.h"
#include "Udp.h"
enum EthernetLinkStatus {
Unknown,
LinkON,
LinkOFF
};
enum EthernetHardwareStatus {
EthernetNoHardware,
EthernetW5100,
EthernetW5200,
EthernetW5500
};
class EthernetUDP;
class EthernetClient;
class EthernetServer;
class DhcpClass;
class EthernetClass {
private:
static IPAddress _dnsServerAddress;
static DhcpClass* _dhcp;
public:
// Initialise the Ethernet shield to use the provided MAC address and
// gain the rest of the configuration through DHCP.
// Returns 0 if the DHCP configuration failed, and 1 if it succeeded
static int begin(uint8_t *mac, unsigned long timeout = 60000, unsigned long responseTimeout = 4000);
static int maintain();
static EthernetLinkStatus linkStatus();
static EthernetHardwareStatus hardwareStatus();
// Manaul configuration
static void begin(uint8_t *mac, IPAddress ip);
static void begin(uint8_t *mac, IPAddress ip, IPAddress dns);
static void begin(uint8_t *mac, IPAddress ip, IPAddress dns, IPAddress gateway);
static void begin(uint8_t *mac, IPAddress ip, IPAddress dns, IPAddress gateway, IPAddress subnet);
static void init(uint8_t sspin = 10);
static void MACAddress(uint8_t *mac_address);
static IPAddress localIP();
static IPAddress subnetMask();
static IPAddress gatewayIP();
static IPAddress dnsServerIP() { return _dnsServerAddress; }
void setMACAddress(const uint8_t *mac_address);
void setLocalIP(const IPAddress local_ip);
void setSubnetMask(const IPAddress subnet);
void setGatewayIP(const IPAddress gateway);
void setDnsServerIP(const IPAddress dns_server) { _dnsServerAddress = dns_server; }
void setRetransmissionTimeout(uint16_t milliseconds);
void setRetransmissionCount(uint8_t num);
friend class EthernetClient;
friend class EthernetServer;
friend class EthernetUDP;
private:
// Opens a socket(TCP or UDP or IP_RAW mode)
static uint8_t socketBegin(uint8_t protocol, uint16_t port);
static uint8_t socketBeginMulticast(uint8_t protocol, IPAddress ip,uint16_t port);
static uint8_t socketStatus(uint8_t s);
// Close socket
static void socketClose(uint8_t s);
// Establish TCP connection (Active connection)
static void socketConnect(uint8_t s, uint8_t * addr, uint16_t port);
// disconnect the connection
static void socketDisconnect(uint8_t s);
// Establish TCP connection (Passive connection)
static uint8_t socketListen(uint8_t s);
// Send data (TCP)
static uint16_t socketSend(uint8_t s, const uint8_t * buf, uint16_t len);
static uint16_t socketSendAvailable(uint8_t s);
// Receive data (TCP)
static int socketRecv(uint8_t s, uint8_t * buf, int16_t len);
static uint16_t socketRecvAvailable(uint8_t s);
static uint8_t socketPeek(uint8_t s);
// sets up a UDP datagram, the data for which will be provided by one
// or more calls to bufferData and then finally sent with sendUDP.
// return true if the datagram was successfully set up, or false if there was an error
static bool socketStartUDP(uint8_t s, uint8_t* addr, uint16_t port);
// copy up to len bytes of data from buf into a UDP datagram to be
// sent later by sendUDP. Allows datagrams to be built up from a series of bufferData calls.
// return Number of bytes successfully buffered
static uint16_t socketBufferData(uint8_t s, uint16_t offset, const uint8_t* buf, uint16_t len);
// Send a UDP datagram built up from a sequence of startUDP followed by one or more
// calls to bufferData.
// return true if the datagram was successfully sent, or false if there was an error
static bool socketSendUDP(uint8_t s);
// Initialize the "random" source port number
static void socketPortRand(uint16_t n);
};
extern EthernetClass Ethernet;
#define UDP_TX_PACKET_MAX_SIZE 24
class EthernetUDP : public UDP {
private:
uint16_t _port; // local port to listen on
IPAddress _remoteIP; // remote IP address for the incoming packet whilst it's being processed
uint16_t _remotePort; // remote port for the incoming packet whilst it's being processed
uint16_t _offset; // offset into the packet being sent
protected:
uint8_t sockindex;
uint16_t _remaining; // remaining bytes of incoming packet yet to be processed
public:
EthernetUDP() : sockindex(MAX_SOCK_NUM) {} // Constructor
virtual uint8_t begin(uint16_t); // initialize, start listening on specified port. Returns 1 if successful, 0 if there are no sockets available to use
virtual uint8_t beginMulticast(IPAddress, uint16_t); // initialize, start listening on specified port. Returns 1 if successful, 0 if there are no sockets available to use
virtual void stop(); // Finish with the UDP socket
// Sending UDP packets
// Start building up a packet to send to the remote host specific in ip and port
// Returns 1 if successful, 0 if there was a problem with the supplied IP address or port
virtual int beginPacket(IPAddress ip, uint16_t port);
// Start building up a packet to send to the remote host specific in host and port
// Returns 1 if successful, 0 if there was a problem resolving the hostname or port
virtual int beginPacket(const char *host, uint16_t port);
// Finish off this packet and send it
// Returns 1 if the packet was sent successfully, 0 if there was an error
virtual int endPacket();
// Write a single byte into the packet
virtual size_t write(uint8_t);
// Write size bytes from buffer into the packet
virtual size_t write(const uint8_t *buffer, size_t size);
using Print::write;
// Start processing the next available incoming packet
// Returns the size of the packet in bytes, or 0 if no packets are available
virtual int parsePacket();
// Number of bytes remaining in the current packet
virtual int available();
// Read a single byte from the current packet
virtual int read();
// Read up to len bytes from the current packet and place them into buffer
// Returns the number of bytes read, or 0 if none are available
virtual int read(unsigned char* buffer, size_t len);
// Read up to len characters from the current packet and place them into buffer
// Returns the number of characters read, or 0 if none are available
virtual int read(char* buffer, size_t len) { return read((unsigned char*)buffer, len); };
// Return the next byte from the current packet without moving on to the next byte
virtual int peek();
virtual void flush(); // Finish reading the current packet
// Return the IP address of the host who sent the current incoming packet
virtual IPAddress remoteIP() { return _remoteIP; };
// Return the port of the host who sent the current incoming packet
virtual uint16_t remotePort() { return _remotePort; };
virtual uint16_t localPort() { return _port; }
};
class EthernetClient : public Client {
public:
EthernetClient() : sockindex(MAX_SOCK_NUM), _timeout(1000) { }
EthernetClient(uint8_t s) : sockindex(s), _timeout(1000) { }
uint8_t status();
virtual int connect(IPAddress ip, uint16_t port);
virtual int connect(const char *host, uint16_t port);
virtual int availableForWrite(void);
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
virtual int available();
virtual int read();
virtual int read(uint8_t *buf, size_t size);
virtual int peek();
virtual void flush();
virtual void stop();
virtual uint8_t connected();
virtual operator bool() { return sockindex < MAX_SOCK_NUM; }
virtual bool operator==(const bool value) { return bool() == value; }
virtual bool operator!=(const bool value) { return bool() != value; }
virtual bool operator==(const EthernetClient&);
virtual bool operator!=(const EthernetClient& rhs) { return !this->operator==(rhs); }
uint8_t getSocketNumber() const { return sockindex; }
virtual uint16_t localPort();
virtual IPAddress remoteIP();
virtual uint16_t remotePort();
virtual void setConnectionTimeout(uint16_t timeout) { _timeout = timeout; }
friend class EthernetServer;
using Print::write;
private:
uint8_t sockindex; // MAX_SOCK_NUM means client not in use
uint16_t _timeout;
};
class EthernetServer : public Server {
private:
uint16_t _port;
public:
EthernetServer(uint16_t port) : _port(port) { }
EthernetClient available();
EthernetClient accept();
virtual void begin();
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
virtual operator bool();
using Print::write;
//void statusreport();
// TODO: make private when socket allocation moves to EthernetClass
static uint16_t server_port[MAX_SOCK_NUM];
};
class DhcpClass {
private:
uint32_t _dhcpInitialTransactionId;
uint32_t _dhcpTransactionId;
uint8_t _dhcpMacAddr[6];
#ifdef __arm__
uint8_t _dhcpLocalIp[4] __attribute__((aligned(4)));
uint8_t _dhcpSubnetMask[4] __attribute__((aligned(4)));
uint8_t _dhcpGatewayIp[4] __attribute__((aligned(4)));
uint8_t _dhcpDhcpServerIp[4] __attribute__((aligned(4)));
uint8_t _dhcpDnsServerIp[4] __attribute__((aligned(4)));
#else
uint8_t _dhcpLocalIp[4];
uint8_t _dhcpSubnetMask[4];
uint8_t _dhcpGatewayIp[4];
uint8_t _dhcpDhcpServerIp[4];
uint8_t _dhcpDnsServerIp[4];
#endif
uint32_t _dhcpLeaseTime;
uint32_t _dhcpT1, _dhcpT2;
uint32_t _renewInSec;
uint32_t _rebindInSec;
unsigned long _timeout;
unsigned long _responseTimeout;
unsigned long _lastCheckLeaseMillis;
uint8_t _dhcp_state;
EthernetUDP _dhcpUdpSocket;
int request_DHCP_lease();
void reset_DHCP_lease();
void presend_DHCP();
void send_DHCP_MESSAGE(uint8_t, uint16_t);
void printByte(char *, uint8_t);
uint8_t parseDHCPResponse(unsigned long responseTimeout, uint32_t& transactionId);
public:
IPAddress getLocalIp();
IPAddress getSubnetMask();
IPAddress getGatewayIp();
IPAddress getDhcpServerIp();
IPAddress getDnsServerIp();
int beginWithDHCP(uint8_t *, unsigned long timeout = 60000, unsigned long responseTimeout = 4000);
int checkLease();
};
#endif

View File

@ -0,0 +1,215 @@
/* Copyright 2018 Paul Stoffregen
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this
* software and associated documentation files (the "Software"), to deal in the Software
* without restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "Ethernet.h"
#include "Dns.h"
#include "utility/w5100.h"
int EthernetClient::connect(const char * host, uint16_t port)
{
DNSClient dns; // Look up the host first
IPAddress remote_addr;
if (sockindex < MAX_SOCK_NUM) {
if (Ethernet.socketStatus(sockindex) != SnSR::CLOSED) {
Ethernet.socketDisconnect(sockindex); // TODO: should we call stop()?
}
sockindex = MAX_SOCK_NUM;
}
dns.begin(Ethernet.dnsServerIP());
if (!dns.getHostByName(host, remote_addr)) return 0; // TODO: use _timeout
return connect(remote_addr, port);
}
int EthernetClient::connect(IPAddress ip, uint16_t port)
{
if (sockindex < MAX_SOCK_NUM) {
if (Ethernet.socketStatus(sockindex) != SnSR::CLOSED) {
Ethernet.socketDisconnect(sockindex); // TODO: should we call stop()?
}
sockindex = MAX_SOCK_NUM;
}
#if defined(ESP8266) || defined(ESP32)
if (ip == IPAddress((uint32_t)0) || ip == IPAddress(0xFFFFFFFFul)) return 0;
#else
if (ip == IPAddress(0ul) || ip == IPAddress(0xFFFFFFFFul)) return 0;
#endif
sockindex = Ethernet.socketBegin(SnMR::TCP, 0);
if (sockindex >= MAX_SOCK_NUM) return 0;
Ethernet.socketConnect(sockindex, rawIPAddress(ip), port);
uint32_t start = millis();
while (1) {
uint8_t stat = Ethernet.socketStatus(sockindex);
if (stat == SnSR::ESTABLISHED) return 1;
if (stat == SnSR::CLOSE_WAIT) return 1;
if (stat == SnSR::CLOSED) return 0;
if (millis() - start > _timeout) break;
delay(1);
}
Ethernet.socketClose(sockindex);
sockindex = MAX_SOCK_NUM;
return 0;
}
int EthernetClient::availableForWrite(void)
{
if (sockindex >= MAX_SOCK_NUM) return 0;
return Ethernet.socketSendAvailable(sockindex);
}
size_t EthernetClient::write(uint8_t b)
{
return write(&b, 1);
}
size_t EthernetClient::write(const uint8_t *buf, size_t size)
{
if (sockindex >= MAX_SOCK_NUM) return 0;
if (Ethernet.socketSend(sockindex, buf, size)) return size;
setWriteError();
return 0;
}
int EthernetClient::available()
{
if (sockindex >= MAX_SOCK_NUM) return 0;
return Ethernet.socketRecvAvailable(sockindex);
// TODO: do the Wiznet chips automatically retransmit TCP ACK
// packets if they are lost by the network? Someday this should
// be checked by a man-in-the-middle test which discards certain
// packets. If ACKs aren't resent, we would need to check for
// returning 0 here and after a timeout do another Sock_RECV
// command to cause the Wiznet chip to resend the ACK packet.
}
int EthernetClient::read(uint8_t *buf, size_t size)
{
if (sockindex >= MAX_SOCK_NUM) return 0;
return Ethernet.socketRecv(sockindex, buf, size);
}
int EthernetClient::peek()
{
if (sockindex >= MAX_SOCK_NUM) return -1;
if (!available()) return -1;
return Ethernet.socketPeek(sockindex);
}
int EthernetClient::read()
{
uint8_t b;
if (Ethernet.socketRecv(sockindex, &b, 1) > 0) return b;
return -1;
}
void EthernetClient::flush()
{
while (sockindex < MAX_SOCK_NUM) {
uint8_t stat = Ethernet.socketStatus(sockindex);
if (stat != SnSR::ESTABLISHED && stat != SnSR::CLOSE_WAIT) return;
if (Ethernet.socketSendAvailable(sockindex) >= W5100.SSIZE) return;
}
}
void EthernetClient::stop()
{
if (sockindex >= MAX_SOCK_NUM) return;
// attempt to close the connection gracefully (send a FIN to other side)
Ethernet.socketDisconnect(sockindex);
unsigned long start = millis();
// wait up to a second for the connection to close
do {
if (Ethernet.socketStatus(sockindex) == SnSR::CLOSED) {
sockindex = MAX_SOCK_NUM;
return; // exit the loop
}
delay(1);
} while (millis() - start < _timeout);
// if it hasn't closed, close it forcefully
Ethernet.socketClose(sockindex);
sockindex = MAX_SOCK_NUM;
}
uint8_t EthernetClient::connected()
{
if (sockindex >= MAX_SOCK_NUM) return 0;
uint8_t s = Ethernet.socketStatus(sockindex);
return !(s == SnSR::LISTEN || s == SnSR::CLOSED || s == SnSR::FIN_WAIT ||
(s == SnSR::CLOSE_WAIT && !available()));
}
uint8_t EthernetClient::status()
{
if (sockindex >= MAX_SOCK_NUM) return SnSR::CLOSED;
return Ethernet.socketStatus(sockindex);
}
// the next function allows us to use the client returned by
// EthernetServer::available() as the condition in an if-statement.
bool EthernetClient::operator==(const EthernetClient& rhs)
{
if (sockindex != rhs.sockindex) return false;
if (sockindex >= MAX_SOCK_NUM) return false;
if (rhs.sockindex >= MAX_SOCK_NUM) return false;
return true;
}
// https://github.com/per1234/EthernetMod
// from: https://github.com/ntruchsess/Arduino-1/commit/937bce1a0bb2567f6d03b15df79525569377dabd
uint16_t EthernetClient::localPort()
{
if (sockindex >= MAX_SOCK_NUM) return 0;
uint16_t port;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
port = W5100.readSnPORT(sockindex);
SPI.endTransaction();
return port;
}
// https://github.com/per1234/EthernetMod
// returns the remote IP address: http://forum.arduino.cc/index.php?topic=82416.0
IPAddress EthernetClient::remoteIP()
{
if (sockindex >= MAX_SOCK_NUM) return IPAddress((uint32_t)0);
uint8_t remoteIParray[4];
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.readSnDIPR(sockindex, remoteIParray);
SPI.endTransaction();
return IPAddress(remoteIParray);
}
// https://github.com/per1234/EthernetMod
// from: https://github.com/ntruchsess/Arduino-1/commit/ca37de4ba4ecbdb941f14ac1fe7dd40f3008af75
uint16_t EthernetClient::remotePort()
{
if (sockindex >= MAX_SOCK_NUM) return 0;
uint16_t port;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
port = W5100.readSnDPORT(sockindex);
SPI.endTransaction();
return port;
}

View File

@ -0,0 +1,3 @@
// This file is in the public domain. No copyright is claimed.
#include "Ethernet.h"

View File

@ -0,0 +1,179 @@
/* Copyright 2018 Paul Stoffregen
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this
* software and associated documentation files (the "Software"), to deal in the Software
* without restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "Ethernet.h"
#include "utility/w5100.h"
uint16_t EthernetServer::server_port[MAX_SOCK_NUM];
void EthernetServer::begin()
{
uint8_t sockindex = Ethernet.socketBegin(SnMR::TCP, _port);
if (sockindex < MAX_SOCK_NUM) {
if (Ethernet.socketListen(sockindex)) {
server_port[sockindex] = _port;
} else {
Ethernet.socketDisconnect(sockindex);
}
}
}
EthernetClient EthernetServer::available()
{
bool listening = false;
uint8_t sockindex = MAX_SOCK_NUM;
uint8_t chip, maxindex=MAX_SOCK_NUM;
chip = W5100.getChip();
if (!chip) return EthernetClient(MAX_SOCK_NUM);
#if MAX_SOCK_NUM > 4
if (chip == 51) maxindex = 4; // W5100 chip never supports more than 4 sockets
#endif
for (uint8_t i=0; i < maxindex; i++) {
if (server_port[i] == _port) {
uint8_t stat = Ethernet.socketStatus(i);
if (stat == SnSR::ESTABLISHED || stat == SnSR::CLOSE_WAIT) {
if (Ethernet.socketRecvAvailable(i) > 0) {
sockindex = i;
} else {
// remote host closed connection, our end still open
if (stat == SnSR::CLOSE_WAIT) {
Ethernet.socketDisconnect(i);
// status becomes LAST_ACK for short time
}
}
} else if (stat == SnSR::LISTEN) {
listening = true;
} else if (stat == SnSR::CLOSED) {
server_port[i] = 0;
}
}
}
if (!listening) begin();
return EthernetClient(sockindex);
}
EthernetClient EthernetServer::accept()
{
bool listening = false;
uint8_t sockindex = MAX_SOCK_NUM;
uint8_t chip, maxindex=MAX_SOCK_NUM;
chip = W5100.getChip();
if (!chip) return EthernetClient(MAX_SOCK_NUM);
#if MAX_SOCK_NUM > 4
if (chip == 51) maxindex = 4; // W5100 chip never supports more than 4 sockets
#endif
for (uint8_t i=0; i < maxindex; i++) {
if (server_port[i] == _port) {
uint8_t stat = Ethernet.socketStatus(i);
if (sockindex == MAX_SOCK_NUM &&
(stat == SnSR::ESTABLISHED || stat == SnSR::CLOSE_WAIT)) {
// Return the connected client even if no data received.
// Some protocols like FTP expect the server to send the
// first data.
sockindex = i;
server_port[i] = 0; // only return the client once
} else if (stat == SnSR::LISTEN) {
listening = true;
} else if (stat == SnSR::CLOSED) {
server_port[i] = 0;
}
}
}
if (!listening) begin();
return EthernetClient(sockindex);
}
EthernetServer::operator bool()
{
uint8_t maxindex=MAX_SOCK_NUM;
#if MAX_SOCK_NUM > 4
if (W5100.getChip() == 51) maxindex = 4; // W5100 chip never supports more than 4 sockets
#endif
for (uint8_t i=0; i < maxindex; i++) {
if (server_port[i] == _port) {
if (Ethernet.socketStatus(i) == SnSR::LISTEN) {
return true; // server is listening for incoming clients
}
}
}
return false;
}
#if 0
void EthernetServer::statusreport()
{
Serial.printf("EthernetServer, port=%d\n", _port);
for (uint8_t i=0; i < MAX_SOCK_NUM; i++) {
uint16_t port = server_port[i];
uint8_t stat = Ethernet.socketStatus(i);
const char *name;
switch (stat) {
case 0x00: name = "CLOSED"; break;
case 0x13: name = "INIT"; break;
case 0x14: name = "LISTEN"; break;
case 0x15: name = "SYNSENT"; break;
case 0x16: name = "SYNRECV"; break;
case 0x17: name = "ESTABLISHED"; break;
case 0x18: name = "FIN_WAIT"; break;
case 0x1A: name = "CLOSING"; break;
case 0x1B: name = "TIME_WAIT"; break;
case 0x1C: name = "CLOSE_WAIT"; break;
case 0x1D: name = "LAST_ACK"; break;
case 0x22: name = "UDP"; break;
case 0x32: name = "IPRAW"; break;
case 0x42: name = "MACRAW"; break;
case 0x5F: name = "PPPOE"; break;
default: name = "???";
}
int avail = Ethernet.socketRecvAvailable(i);
Serial.printf(" %d: port=%d, status=%s (0x%02X), avail=%d\n",
i, port, name, stat, avail);
}
}
#endif
size_t EthernetServer::write(uint8_t b)
{
return write(&b, 1);
}
size_t EthernetServer::write(const uint8_t *buffer, size_t size)
{
uint8_t chip, maxindex=MAX_SOCK_NUM;
chip = W5100.getChip();
if (!chip) return 0;
#if MAX_SOCK_NUM > 4
if (chip == 51) maxindex = 4; // W5100 chip never supports more than 4 sockets
#endif
available();
for (uint8_t i=0; i < maxindex; i++) {
if (server_port[i] == _port) {
if (Ethernet.socketStatus(i) == SnSR::ESTABLISHED) {
Ethernet.socketSend(i, buffer, size);
}
}
}
return size;
}

View File

@ -0,0 +1,3 @@
// This file is in the public domain. No copyright is claimed.
#include "Ethernet.h"

View File

@ -0,0 +1,191 @@
/*
* Udp.cpp: Library to send/receive UDP packets with the Arduino ethernet shield.
* This version only offers minimal wrapping of socket.cpp
* Drop Udp.h/.cpp into the Ethernet library directory at hardware/libraries/Ethernet/
*
* MIT License:
* Copyright (c) 2008 Bjoern Hartmann
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* bjoern@cs.stanford.edu 12/30/2008
*/
#include <Arduino.h>
#include "Ethernet.h"
#include "Dns.h"
#include "utility/w5100.h"
/* Start EthernetUDP socket, listening at local port PORT */
uint8_t EthernetUDP::begin(uint16_t port)
{
if (sockindex < MAX_SOCK_NUM) Ethernet.socketClose(sockindex);
sockindex = Ethernet.socketBegin(SnMR::UDP, port);
if (sockindex >= MAX_SOCK_NUM) return 0;
_port = port;
_remaining = 0;
return 1;
}
/* return number of bytes available in the current packet,
will return zero if parsePacket hasn't been called yet */
int EthernetUDP::available()
{
return _remaining;
}
/* Release any resources being used by this EthernetUDP instance */
void EthernetUDP::stop()
{
if (sockindex < MAX_SOCK_NUM) {
Ethernet.socketClose(sockindex);
sockindex = MAX_SOCK_NUM;
}
}
int EthernetUDP::beginPacket(const char *host, uint16_t port)
{
// Look up the host first
int ret = 0;
DNSClient dns;
IPAddress remote_addr;
dns.begin(Ethernet.dnsServerIP());
ret = dns.getHostByName(host, remote_addr);
if (ret != 1) return ret;
return beginPacket(remote_addr, port);
}
int EthernetUDP::beginPacket(IPAddress ip, uint16_t port)
{
_offset = 0;
//Serial.printf("UDP beginPacket\n");
return Ethernet.socketStartUDP(sockindex, rawIPAddress(ip), port);
}
int EthernetUDP::endPacket()
{
return Ethernet.socketSendUDP(sockindex);
}
size_t EthernetUDP::write(uint8_t byte)
{
return write(&byte, 1);
}
size_t EthernetUDP::write(const uint8_t *buffer, size_t size)
{
//Serial.printf("UDP write %d\n", size);
uint16_t bytes_written = Ethernet.socketBufferData(sockindex, _offset, buffer, size);
_offset += bytes_written;
return bytes_written;
}
int EthernetUDP::parsePacket()
{
// discard any remaining bytes in the last packet
while (_remaining) {
// could this fail (loop endlessly) if _remaining > 0 and recv in read fails?
// should only occur if recv fails after telling us the data is there, lets
// hope the w5100 always behaves :)
read((uint8_t *)NULL, _remaining);
}
if (Ethernet.socketRecvAvailable(sockindex) > 0) {
//HACK - hand-parse the UDP packet using TCP recv method
uint8_t tmpBuf[8];
int ret=0;
//read 8 header bytes and get IP and port from it
ret = Ethernet.socketRecv(sockindex, tmpBuf, 8);
if (ret > 0) {
_remoteIP = tmpBuf;
_remotePort = tmpBuf[4];
_remotePort = (_remotePort << 8) + tmpBuf[5];
_remaining = tmpBuf[6];
_remaining = (_remaining << 8) + tmpBuf[7];
// When we get here, any remaining bytes are the data
ret = _remaining;
}
return ret;
}
// There aren't any packets available
return 0;
}
int EthernetUDP::read()
{
uint8_t byte;
if ((_remaining > 0) && (Ethernet.socketRecv(sockindex, &byte, 1) > 0)) {
// We read things without any problems
_remaining--;
return byte;
}
// If we get here, there's no data available
return -1;
}
int EthernetUDP::read(unsigned char *buffer, size_t len)
{
if (_remaining > 0) {
int got;
if (_remaining <= len) {
// data should fit in the buffer
got = Ethernet.socketRecv(sockindex, buffer, _remaining);
} else {
// too much data for the buffer,
// grab as much as will fit
got = Ethernet.socketRecv(sockindex, buffer, len);
}
if (got > 0) {
_remaining -= got;
//Serial.printf("UDP read %d\n", got);
return got;
}
}
// If we get here, there's no data available or recv failed
return -1;
}
int EthernetUDP::peek()
{
// Unlike recv, peek doesn't check to see if there's any data available, so we must.
// If the user hasn't called parsePacket yet then return nothing otherwise they
// may get the UDP header
if (sockindex >= MAX_SOCK_NUM || _remaining == 0) return -1;
return Ethernet.socketPeek(sockindex);
}
void EthernetUDP::flush()
{
// TODO: we should wait for TX buffer to be emptied
}
/* Start EthernetUDP socket, listening at local port PORT */
uint8_t EthernetUDP::beginMulticast(IPAddress ip, uint16_t port)
{
if (sockindex < MAX_SOCK_NUM) Ethernet.socketClose(sockindex);
sockindex = Ethernet.socketBeginMulticast(SnMR::UDP | SnMR::MULTI, ip, port);
if (sockindex >= MAX_SOCK_NUM) return 0;
_port = port;
_remaining = 0;
return 1;
}

View File

@ -0,0 +1,38 @@
/*
* Udp.cpp: Library to send/receive UDP packets with the Arduino ethernet shield.
* This version only offers minimal wrapping of socket.cpp
* Drop Udp.h/.cpp into the Ethernet library directory at hardware/libraries/Ethernet/
*
* NOTE: UDP is fast, but has some important limitations (thanks to Warren Gray for mentioning these)
* 1) UDP does not guarantee the order in which assembled UDP packets are received. This
* might not happen often in practice, but in larger network topologies, a UDP
* packet can be received out of sequence.
* 2) UDP does not guard against lost packets - so packets *can* disappear without the sender being
* aware of it. Again, this may not be a concern in practice on small local networks.
* For more information, see http://www.cafeaulait.org/course/week12/35.html
*
* MIT License:
* Copyright (c) 2008 Bjoern Hartmann
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* bjoern@cs.stanford.edu 12/30/2008
*/
#include "Ethernet.h"

View File

@ -0,0 +1,539 @@
/* Copyright 2018 Paul Stoffregen
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this
* software and associated documentation files (the "Software"), to deal in the Software
* without restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "Ethernet.h"
#include "utility/w5100.h"
#if ARDUINO >= 156 && !defined(ARDUINO_ARCH_PIC32)
extern void yield(void);
#else
#define yield()
#endif
// TODO: randomize this when not using DHCP, but how?
static uint16_t local_port = 49152; // 49152 to 65535
typedef struct {
uint16_t RX_RSR; // Number of bytes received
uint16_t RX_RD; // Address to read
uint16_t TX_FSR; // Free space ready for transmit
uint8_t RX_inc; // how much have we advanced RX_RD
} socketstate_t;
static socketstate_t state[MAX_SOCK_NUM];
static uint16_t getSnTX_FSR(uint8_t s);
static uint16_t getSnRX_RSR(uint8_t s);
static void write_data(uint8_t s, uint16_t offset, const uint8_t *data, uint16_t len);
static void read_data(uint8_t s, uint16_t src, uint8_t *dst, uint16_t len);
/*****************************************/
/* Socket management */
/*****************************************/
void EthernetClass::socketPortRand(uint16_t n)
{
n &= 0x3FFF;
local_port ^= n;
//Serial.printf("socketPortRand %d, srcport=%d\n", n, local_port);
}
uint8_t EthernetClass::socketBegin(uint8_t protocol, uint16_t port)
{
uint8_t s, status[MAX_SOCK_NUM], chip, maxindex=MAX_SOCK_NUM;
// first check hardware compatibility
chip = W5100.getChip();
if (!chip) return MAX_SOCK_NUM; // immediate error if no hardware detected
#if MAX_SOCK_NUM > 4
if (chip == 51) maxindex = 4; // W5100 chip never supports more than 4 sockets
#endif
//Serial.printf("W5000socket begin, protocol=%d, port=%d\n", protocol, port);
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
// look at all the hardware sockets, use any that are closed (unused)
for (s=0; s < maxindex; s++) {
status[s] = W5100.readSnSR(s);
if (status[s] == SnSR::CLOSED) goto makesocket;
}
//Serial.printf("W5000socket step2\n");
// as a last resort, forcibly close any already closing
for (s=0; s < maxindex; s++) {
uint8_t stat = status[s];
if (stat == SnSR::LAST_ACK) goto closemakesocket;
if (stat == SnSR::TIME_WAIT) goto closemakesocket;
if (stat == SnSR::FIN_WAIT) goto closemakesocket;
if (stat == SnSR::CLOSING) goto closemakesocket;
}
#if 0
Serial.printf("W5000socket step3\n");
// next, use any that are effectively closed
for (s=0; s < MAX_SOCK_NUM; s++) {
uint8_t stat = status[s];
// TODO: this also needs to check if no more data
if (stat == SnSR::CLOSE_WAIT) goto closemakesocket;
}
#endif
SPI.endTransaction();
return MAX_SOCK_NUM; // all sockets are in use
closemakesocket:
//Serial.printf("W5000socket close\n");
W5100.execCmdSn(s, Sock_CLOSE);
makesocket:
//Serial.printf("W5000socket %d\n", s);
EthernetServer::server_port[s] = 0;
delayMicroseconds(250); // TODO: is this needed??
W5100.writeSnMR(s, protocol);
W5100.writeSnIR(s, 0xFF);
if (port > 0) {
W5100.writeSnPORT(s, port);
} else {
// if don't set the source port, set local_port number.
if (++local_port < 49152) local_port = 49152;
W5100.writeSnPORT(s, local_port);
}
W5100.execCmdSn(s, Sock_OPEN);
state[s].RX_RSR = 0;
state[s].RX_RD = W5100.readSnRX_RD(s); // always zero?
state[s].RX_inc = 0;
state[s].TX_FSR = 0;
//Serial.printf("W5000socket prot=%d, RX_RD=%d\n", W5100.readSnMR(s), state[s].RX_RD);
SPI.endTransaction();
return s;
}
// multicast version to set fields before open thd
uint8_t EthernetClass::socketBeginMulticast(uint8_t protocol, IPAddress ip, uint16_t port)
{
uint8_t s, status[MAX_SOCK_NUM], chip, maxindex=MAX_SOCK_NUM;
// first check hardware compatibility
chip = W5100.getChip();
if (!chip) return MAX_SOCK_NUM; // immediate error if no hardware detected
#if MAX_SOCK_NUM > 4
if (chip == 51) maxindex = 4; // W5100 chip never supports more than 4 sockets
#endif
//Serial.printf("W5000socket begin, protocol=%d, port=%d\n", protocol, port);
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
// look at all the hardware sockets, use any that are closed (unused)
for (s=0; s < maxindex; s++) {
status[s] = W5100.readSnSR(s);
if (status[s] == SnSR::CLOSED) goto makesocket;
}
//Serial.printf("W5000socket step2\n");
// as a last resort, forcibly close any already closing
for (s=0; s < maxindex; s++) {
uint8_t stat = status[s];
if (stat == SnSR::LAST_ACK) goto closemakesocket;
if (stat == SnSR::TIME_WAIT) goto closemakesocket;
if (stat == SnSR::FIN_WAIT) goto closemakesocket;
if (stat == SnSR::CLOSING) goto closemakesocket;
}
#if 0
Serial.printf("W5000socket step3\n");
// next, use any that are effectively closed
for (s=0; s < MAX_SOCK_NUM; s++) {
uint8_t stat = status[s];
// TODO: this also needs to check if no more data
if (stat == SnSR::CLOSE_WAIT) goto closemakesocket;
}
#endif
SPI.endTransaction();
return MAX_SOCK_NUM; // all sockets are in use
closemakesocket:
//Serial.printf("W5000socket close\n");
W5100.execCmdSn(s, Sock_CLOSE);
makesocket:
//Serial.printf("W5000socket %d\n", s);
EthernetServer::server_port[s] = 0;
delayMicroseconds(250); // TODO: is this needed??
W5100.writeSnMR(s, protocol);
W5100.writeSnIR(s, 0xFF);
if (port > 0) {
W5100.writeSnPORT(s, port);
} else {
// if don't set the source port, set local_port number.
if (++local_port < 49152) local_port = 49152;
W5100.writeSnPORT(s, local_port);
}
// Calculate MAC address from Multicast IP Address
byte mac[] = { 0x01, 0x00, 0x5E, 0x00, 0x00, 0x00 };
mac[3] = ip[1] & 0x7F;
mac[4] = ip[2];
mac[5] = ip[3];
W5100.writeSnDIPR(s, ip.raw_address()); //239.255.0.1
W5100.writeSnDPORT(s, port);
W5100.writeSnDHAR(s, mac);
W5100.execCmdSn(s, Sock_OPEN);
state[s].RX_RSR = 0;
state[s].RX_RD = W5100.readSnRX_RD(s); // always zero?
state[s].RX_inc = 0;
state[s].TX_FSR = 0;
//Serial.printf("W5000socket prot=%d, RX_RD=%d\n", W5100.readSnMR(s), state[s].RX_RD);
SPI.endTransaction();
return s;
}
// Return the socket's status
//
uint8_t EthernetClass::socketStatus(uint8_t s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
uint8_t status = W5100.readSnSR(s);
SPI.endTransaction();
return status;
}
// Immediately close. If a TCP connection is established, the
// remote host is left unaware we closed.
//
void EthernetClass::socketClose(uint8_t s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.execCmdSn(s, Sock_CLOSE);
SPI.endTransaction();
}
// Place the socket in listening (server) mode
//
uint8_t EthernetClass::socketListen(uint8_t s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
if (W5100.readSnSR(s) != SnSR::INIT) {
SPI.endTransaction();
return 0;
}
W5100.execCmdSn(s, Sock_LISTEN);
SPI.endTransaction();
return 1;
}
// establish a TCP connection in Active (client) mode.
//
void EthernetClass::socketConnect(uint8_t s, uint8_t * addr, uint16_t port)
{
// set destination IP
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnDIPR(s, addr);
W5100.writeSnDPORT(s, port);
W5100.execCmdSn(s, Sock_CONNECT);
SPI.endTransaction();
}
// Gracefully disconnect a TCP connection.
//
void EthernetClass::socketDisconnect(uint8_t s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.execCmdSn(s, Sock_DISCON);
SPI.endTransaction();
}
/*****************************************/
/* Socket Data Receive Functions */
/*****************************************/
static uint16_t getSnRX_RSR(uint8_t s)
{
#if 1
uint16_t val, prev;
prev = W5100.readSnRX_RSR(s);
while (1) {
val = W5100.readSnRX_RSR(s);
if (val == prev) {
return val;
}
prev = val;
}
#else
uint16_t val = W5100.readSnRX_RSR(s);
return val;
#endif
}
static void read_data(uint8_t s, uint16_t src, uint8_t *dst, uint16_t len)
{
uint16_t size;
uint16_t src_mask;
uint16_t src_ptr;
//Serial.printf("read_data, len=%d, at:%d\n", len, src);
src_mask = (uint16_t)src & W5100.SMASK;
src_ptr = W5100.RBASE(s) + src_mask;
if (W5100.hasOffsetAddressMapping() || src_mask + len <= W5100.SSIZE) {
W5100.read(src_ptr, dst, len);
} else {
size = W5100.SSIZE - src_mask;
W5100.read(src_ptr, dst, size);
dst += size;
W5100.read(W5100.RBASE(s), dst, len - size);
}
}
// Receive data. Returns size, or -1 for no data, or 0 if connection closed
//
int EthernetClass::socketRecv(uint8_t s, uint8_t *buf, int16_t len)
{
// Check how much data is available
int ret = state[s].RX_RSR;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
if (ret < len) {
uint16_t rsr = getSnRX_RSR(s);
ret = rsr - state[s].RX_inc;
state[s].RX_RSR = ret;
//Serial.printf("Sock_RECV, RX_RSR=%d, RX_inc=%d\n", ret, state[s].RX_inc);
}
if (ret == 0) {
// No data available.
uint8_t status = W5100.readSnSR(s);
if ( status == SnSR::LISTEN || status == SnSR::CLOSED ||
status == SnSR::CLOSE_WAIT ) {
// The remote end has closed its side of the connection,
// so this is the eof state
ret = 0;
} else {
// The connection is still up, but there's no data waiting to be read
ret = -1;
}
} else {
if (ret > len) ret = len; // more data available than buffer length
uint16_t ptr = state[s].RX_RD;
if (buf) read_data(s, ptr, buf, ret);
ptr += ret;
state[s].RX_RD = ptr;
state[s].RX_RSR -= ret;
uint16_t inc = state[s].RX_inc + ret;
if (inc >= 250 || state[s].RX_RSR == 0) {
state[s].RX_inc = 0;
W5100.writeSnRX_RD(s, ptr);
W5100.execCmdSn(s, Sock_RECV);
//Serial.printf("Sock_RECV cmd, RX_RD=%d, RX_RSR=%d\n",
// state[s].RX_RD, state[s].RX_RSR);
} else {
state[s].RX_inc = inc;
}
}
SPI.endTransaction();
//Serial.printf("socketRecv, ret=%d\n", ret);
return ret;
}
uint16_t EthernetClass::socketRecvAvailable(uint8_t s)
{
uint16_t ret = state[s].RX_RSR;
if (ret == 0) {
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
uint16_t rsr = getSnRX_RSR(s);
SPI.endTransaction();
ret = rsr - state[s].RX_inc;
state[s].RX_RSR = ret;
//Serial.printf("sockRecvAvailable s=%d, RX_RSR=%d\n", s, ret);
}
return ret;
}
// get the first byte in the receive queue (no checking)
//
uint8_t EthernetClass::socketPeek(uint8_t s)
{
uint8_t b;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
uint16_t ptr = state[s].RX_RD;
W5100.read((ptr & W5100.SMASK) + W5100.RBASE(s), &b, 1);
SPI.endTransaction();
return b;
}
/*****************************************/
/* Socket Data Transmit Functions */
/*****************************************/
static uint16_t getSnTX_FSR(uint8_t s)
{
uint16_t val, prev;
prev = W5100.readSnTX_FSR(s);
while (1) {
val = W5100.readSnTX_FSR(s);
if (val == prev) {
state[s].TX_FSR = val;
return val;
}
prev = val;
}
}
static void write_data(uint8_t s, uint16_t data_offset, const uint8_t *data, uint16_t len)
{
uint16_t ptr = W5100.readSnTX_WR(s);
ptr += data_offset;
uint16_t offset = ptr & W5100.SMASK;
uint16_t dstAddr = offset + W5100.SBASE(s);
if (W5100.hasOffsetAddressMapping() || offset + len <= W5100.SSIZE) {
W5100.write(dstAddr, data, len);
} else {
// Wrap around circular buffer
uint16_t size = W5100.SSIZE - offset;
W5100.write(dstAddr, data, size);
W5100.write(W5100.SBASE(s), data + size, len - size);
}
ptr += len;
W5100.writeSnTX_WR(s, ptr);
}
/**
* @brief This function used to send the data in TCP mode
* @return 1 for success else 0.
*/
uint16_t EthernetClass::socketSend(uint8_t s, const uint8_t * buf, uint16_t len)
{
uint8_t status=0;
uint16_t ret=0;
uint16_t freesize=0;
if (len > W5100.SSIZE) {
ret = W5100.SSIZE; // check size not to exceed MAX size.
} else {
ret = len;
}
// if freebuf is available, start.
do {
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
freesize = getSnTX_FSR(s);
status = W5100.readSnSR(s);
SPI.endTransaction();
if ((status != SnSR::ESTABLISHED) && (status != SnSR::CLOSE_WAIT)) {
ret = 0;
break;
}
yield();
} while (freesize < ret);
// copy data
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
write_data(s, 0, (uint8_t *)buf, ret);
W5100.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK ) {
/* m2008.01 [bj] : reduce code */
if ( W5100.readSnSR(s) == SnSR::CLOSED ) {
SPI.endTransaction();
return 0;
}
SPI.endTransaction();
yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
/* +2008.01 bj */
W5100.writeSnIR(s, SnIR::SEND_OK);
SPI.endTransaction();
return ret;
}
uint16_t EthernetClass::socketSendAvailable(uint8_t s)
{
uint8_t status=0;
uint16_t freesize=0;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
freesize = getSnTX_FSR(s);
status = W5100.readSnSR(s);
SPI.endTransaction();
if ((status == SnSR::ESTABLISHED) || (status == SnSR::CLOSE_WAIT)) {
return freesize;
}
return 0;
}
uint16_t EthernetClass::socketBufferData(uint8_t s, uint16_t offset, const uint8_t* buf, uint16_t len)
{
//Serial.printf(" bufferData, offset=%d, len=%d\n", offset, len);
uint16_t ret =0;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
uint16_t txfree = getSnTX_FSR(s);
if (len > txfree) {
ret = txfree; // check size not to exceed MAX size.
} else {
ret = len;
}
write_data(s, offset, buf, ret);
SPI.endTransaction();
return ret;
}
bool EthernetClass::socketStartUDP(uint8_t s, uint8_t* addr, uint16_t port)
{
if ( ((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
((port == 0x00)) ) {
return false;
}
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnDIPR(s, addr);
W5100.writeSnDPORT(s, port);
SPI.endTransaction();
return true;
}
bool EthernetClass::socketSendUDP(uint8_t s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK ) {
if (W5100.readSnIR(s) & SnIR::TIMEOUT) {
/* +2008.01 [bj]: clear interrupt */
W5100.writeSnIR(s, (SnIR::SEND_OK|SnIR::TIMEOUT));
SPI.endTransaction();
//Serial.printf("sendUDP timeout\n");
return false;
}
SPI.endTransaction();
yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
/* +2008.01 bj */
W5100.writeSnIR(s, SnIR::SEND_OK);
SPI.endTransaction();
//Serial.printf("sendUDP ok\n");
/* Sent ok */
return true;
}

View File

@ -0,0 +1,474 @@
/*
* Copyright 2018 Paul Stoffregen
* Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
#include <Arduino.h>
#include "Ethernet.h"
#include "w5100.h"
/***************************************************/
/** Default SS pin setting **/
/***************************************************/
// If variant.h or other headers specifically define the
// default SS pin for ethernet, use it.
#if defined(PIN_SPI_SS_ETHERNET_LIB)
#define SS_PIN_DEFAULT PIN_SPI_SS_ETHERNET_LIB
// MKR boards default to pin 5 for MKR ETH
// Pins 8-10 are MOSI/SCK/MISO on MRK, so don't use pin 10
#elif defined(USE_ARDUINO_MKR_PIN_LAYOUT) || defined(ARDUINO_SAMD_MKRZERO) || defined(ARDUINO_SAMD_MKR1000) || defined(ARDUINO_SAMD_MKRFox1200) || defined(ARDUINO_SAMD_MKRGSM1400) || defined(ARDUINO_SAMD_MKRWAN1300)
#define SS_PIN_DEFAULT 5
// For boards using AVR, assume shields with SS on pin 10
// will be used. This allows for Arduino Mega (where
// SS is pin 53) and Arduino Leonardo (where SS is pin 17)
// to work by default with Arduino Ethernet Shield R2 & R3.
#elif defined(__AVR__)
#define SS_PIN_DEFAULT 10
// If variant.h or other headers define these names
// use them if none of the other cases match
#elif defined(PIN_SPI_SS)
#define SS_PIN_DEFAULT PIN_SPI_SS
#elif defined(CORE_SS0_PIN)
#define SS_PIN_DEFAULT CORE_SS0_PIN
// As a final fallback, use pin 10
#else
#define SS_PIN_DEFAULT 10
#endif
// W5100 controller instance
uint8_t W5100Class::chip = 0;
uint8_t W5100Class::CH_BASE_MSB;
uint8_t W5100Class::ss_pin = SS_PIN_DEFAULT;
#ifdef ETHERNET_LARGE_BUFFERS
uint16_t W5100Class::SSIZE = 2048;
uint16_t W5100Class::SMASK = 0x07FF;
#endif
W5100Class W5100;
// pointers and bitmasks for optimized SS pin
#if defined(__AVR__)
volatile uint8_t * W5100Class::ss_pin_reg;
uint8_t W5100Class::ss_pin_mask;
#elif defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK66FX1M0__) || defined(__MK64FX512__)
volatile uint8_t * W5100Class::ss_pin_reg;
#elif defined(__MKL26Z64__)
volatile uint8_t * W5100Class::ss_pin_reg;
uint8_t W5100Class::ss_pin_mask;
#elif defined(__SAM3X8E__) || defined(__SAM3A8C__) || defined(__SAM3A4C__)
volatile uint32_t * W5100Class::ss_pin_reg;
uint32_t W5100Class::ss_pin_mask;
#elif defined(__PIC32MX__)
volatile uint32_t * W5100Class::ss_pin_reg;
uint32_t W5100Class::ss_pin_mask;
#elif defined(ARDUINO_ARCH_ESP8266)
volatile uint32_t * W5100Class::ss_pin_reg;
uint32_t W5100Class::ss_pin_mask;
#elif defined(__SAMD21G18A__)
volatile uint32_t * W5100Class::ss_pin_reg;
uint32_t W5100Class::ss_pin_mask;
#endif
uint8_t W5100Class::init(void)
{
static bool initialized = false;
uint8_t i;
if (initialized) return 1;
// Many Ethernet shields have a CAT811 or similar reset chip
// connected to W5100 or W5200 chips. The W5200 will not work at
// all, and may even drive its MISO pin, until given an active low
// reset pulse! The CAT811 has a 240 ms typical pulse length, and
// a 400 ms worst case maximum pulse length. MAX811 has a worst
// case maximum 560 ms pulse length. This delay is meant to wait
// until the reset pulse is ended. If your hardware has a shorter
// reset time, this can be edited or removed.
delay(560);
//Serial.println("w5100 init");
SPI.begin();
initSS();
resetSS();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
// Attempt W5200 detection first, because W5200 does not properly
// reset its SPI state when CS goes high (inactive). Communication
// from detecting the other chips can leave the W5200 in a state
// where it won't recover, unless given a reset pulse.
if (isW5200()) {
CH_BASE_MSB = 0x40;
#ifdef ETHERNET_LARGE_BUFFERS
#if MAX_SOCK_NUM <= 1
SSIZE = 16384;
#elif MAX_SOCK_NUM <= 2
SSIZE = 8192;
#elif MAX_SOCK_NUM <= 4
SSIZE = 4096;
#else
SSIZE = 2048;
#endif
SMASK = SSIZE - 1;
#endif
for (i=0; i<MAX_SOCK_NUM; i++) {
writeSnRX_SIZE(i, SSIZE >> 10);
writeSnTX_SIZE(i, SSIZE >> 10);
}
for (; i<8; i++) {
writeSnRX_SIZE(i, 0);
writeSnTX_SIZE(i, 0);
}
// Try W5500 next. Wiznet finally seems to have implemented
// SPI well with this chip. It appears to be very resilient,
// so try it after the fragile W5200
} else if (isW5500()) {
CH_BASE_MSB = 0x10;
#ifdef ETHERNET_LARGE_BUFFERS
#if MAX_SOCK_NUM <= 1
SSIZE = 16384;
#elif MAX_SOCK_NUM <= 2
SSIZE = 8192;
#elif MAX_SOCK_NUM <= 4
SSIZE = 4096;
#else
SSIZE = 2048;
#endif
SMASK = SSIZE - 1;
for (i=0; i<MAX_SOCK_NUM; i++) {
writeSnRX_SIZE(i, SSIZE >> 10);
writeSnTX_SIZE(i, SSIZE >> 10);
}
for (; i<8; i++) {
writeSnRX_SIZE(i, 0);
writeSnTX_SIZE(i, 0);
}
#endif
// Try W5100 last. This simple chip uses fixed 4 byte frames
// for every 8 bit access. Terribly inefficient, but so simple
// it recovers from "hearing" unsuccessful W5100 or W5200
// communication. W5100 is also the only chip without a VERSIONR
// register for identification, so we check this last.
} else if (isW5100()) {
CH_BASE_MSB = 0x04;
#ifdef ETHERNET_LARGE_BUFFERS
#if MAX_SOCK_NUM <= 1
SSIZE = 8192;
writeTMSR(0x03);
writeRMSR(0x03);
#elif MAX_SOCK_NUM <= 2
SSIZE = 4096;
writeTMSR(0x0A);
writeRMSR(0x0A);
#else
SSIZE = 2048;
writeTMSR(0x55);
writeRMSR(0x55);
#endif
SMASK = SSIZE - 1;
#else
writeTMSR(0x55);
writeRMSR(0x55);
#endif
// No hardware seems to be present. Or it could be a W5200
// that's heard other SPI communication if its chip select
// pin wasn't high when a SD card or other SPI chip was used.
} else {
//Serial.println("no chip :-(");
chip = 0;
SPI.endTransaction();
return 0; // no known chip is responding :-(
}
SPI.endTransaction();
initialized = true;
return 1; // successful init
}
// Soft reset the Wiznet chip, by writing to its MR register reset bit
uint8_t W5100Class::softReset(void)
{
uint16_t count=0;
//Serial.println("Wiznet soft reset");
// write to reset bit
writeMR(0x80);
// then wait for soft reset to complete
do {
uint8_t mr = readMR();
//Serial.print("mr=");
//Serial.println(mr, HEX);
if (mr == 0) return 1;
delay(1);
} while (++count < 20);
return 0;
}
uint8_t W5100Class::isW5100(void)
{
chip = 51;
//Serial.println("w5100.cpp: detect W5100 chip");
if (!softReset()) return 0;
writeMR(0x10);
if (readMR() != 0x10) return 0;
writeMR(0x12);
if (readMR() != 0x12) return 0;
writeMR(0x00);
if (readMR() != 0x00) return 0;
//Serial.println("chip is W5100");
return 1;
}
uint8_t W5100Class::isW5200(void)
{
chip = 52;
//Serial.println("w5100.cpp: detect W5200 chip");
if (!softReset()) return 0;
writeMR(0x08);
if (readMR() != 0x08) return 0;
writeMR(0x10);
if (readMR() != 0x10) return 0;
writeMR(0x00);
if (readMR() != 0x00) return 0;
int ver = readVERSIONR_W5200();
//Serial.print("version=");
//Serial.println(ver);
if (ver != 3) return 0;
//Serial.println("chip is W5200");
return 1;
}
uint8_t W5100Class::isW5500(void)
{
chip = 55;
//Serial.println("w5100.cpp: detect W5500 chip");
if (!softReset()) return 0;
writeMR(0x08);
if (readMR() != 0x08) return 0;
writeMR(0x10);
if (readMR() != 0x10) return 0;
writeMR(0x00);
if (readMR() != 0x00) return 0;
int ver = readVERSIONR_W5500();
//Serial.print("version=");
//Serial.println(ver);
if (ver != 4) return 0;
//Serial.println("chip is W5500");
return 1;
}
W5100Linkstatus W5100Class::getLinkStatus()
{
uint8_t phystatus;
if (!init()) return UNKNOWN;
switch (chip) {
case 52:
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
phystatus = readPSTATUS_W5200();
SPI.endTransaction();
if (phystatus & 0x20) return LINK_ON;
return LINK_OFF;
case 55:
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
phystatus = readPHYCFGR_W5500();
SPI.endTransaction();
if (phystatus & 0x01) return LINK_ON;
return LINK_OFF;
default:
return UNKNOWN;
}
}
uint16_t W5100Class::write(uint16_t addr, const uint8_t *buf, uint16_t len)
{
uint8_t cmd[8];
if (chip == 51) {
for (uint16_t i=0; i<len; i++) {
setSS();
SPI.transfer(0xF0);
SPI.transfer(addr >> 8);
SPI.transfer(addr & 0xFF);
addr++;
SPI.transfer(buf[i]);
resetSS();
}
} else if (chip == 52) {
setSS();
cmd[0] = addr >> 8;
cmd[1] = addr & 0xFF;
cmd[2] = ((len >> 8) & 0x7F) | 0x80;
cmd[3] = len & 0xFF;
SPI.transfer(cmd, 4);
#ifdef SPI_HAS_TRANSFER_BUF
SPI.transfer(buf, NULL, len);
#else
// TODO: copy 8 bytes at a time to cmd[] and block transfer
for (uint16_t i=0; i < len; i++) {
SPI.transfer(buf[i]);
}
#endif
resetSS();
} else { // chip == 55
setSS();
if (addr < 0x100) {
// common registers 00nn
cmd[0] = 0;
cmd[1] = addr & 0xFF;
cmd[2] = 0x04;
} else if (addr < 0x8000) {
// socket registers 10nn, 11nn, 12nn, 13nn, etc
cmd[0] = 0;
cmd[1] = addr & 0xFF;
cmd[2] = ((addr >> 3) & 0xE0) | 0x0C;
} else if (addr < 0xC000) {
// transmit buffers 8000-87FF, 8800-8FFF, 9000-97FF, etc
// 10## #nnn nnnn nnnn
cmd[0] = addr >> 8;
cmd[1] = addr & 0xFF;
#if defined(ETHERNET_LARGE_BUFFERS) && MAX_SOCK_NUM <= 1
cmd[2] = 0x14; // 16K buffers
#elif defined(ETHERNET_LARGE_BUFFERS) && MAX_SOCK_NUM <= 2
cmd[2] = ((addr >> 8) & 0x20) | 0x14; // 8K buffers
#elif defined(ETHERNET_LARGE_BUFFERS) && MAX_SOCK_NUM <= 4
cmd[2] = ((addr >> 7) & 0x60) | 0x14; // 4K buffers
#else
cmd[2] = ((addr >> 6) & 0xE0) | 0x14; // 2K buffers
#endif
} else {
// receive buffers
cmd[0] = addr >> 8;
cmd[1] = addr & 0xFF;
#if defined(ETHERNET_LARGE_BUFFERS) && MAX_SOCK_NUM <= 1
cmd[2] = 0x1C; // 16K buffers
#elif defined(ETHERNET_LARGE_BUFFERS) && MAX_SOCK_NUM <= 2
cmd[2] = ((addr >> 8) & 0x20) | 0x1C; // 8K buffers
#elif defined(ETHERNET_LARGE_BUFFERS) && MAX_SOCK_NUM <= 4
cmd[2] = ((addr >> 7) & 0x60) | 0x1C; // 4K buffers
#else
cmd[2] = ((addr >> 6) & 0xE0) | 0x1C; // 2K buffers
#endif
}
if (len <= 5) {
for (uint8_t i=0; i < len; i++) {
cmd[i + 3] = buf[i];
}
SPI.transfer(cmd, len + 3);
} else {
SPI.transfer(cmd, 3);
#ifdef SPI_HAS_TRANSFER_BUF
SPI.transfer(buf, NULL, len);
#else
// TODO: copy 8 bytes at a time to cmd[] and block transfer
for (uint16_t i=0; i < len; i++) {
SPI.transfer(buf[i]);
}
#endif
}
resetSS();
}
return len;
}
uint16_t W5100Class::read(uint16_t addr, uint8_t *buf, uint16_t len)
{
uint8_t cmd[4];
if (chip == 51) {
for (uint16_t i=0; i < len; i++) {
setSS();
#if 1
SPI.transfer(0x0F);
SPI.transfer(addr >> 8);
SPI.transfer(addr & 0xFF);
addr++;
buf[i] = SPI.transfer(0);
#else
cmd[0] = 0x0F;
cmd[1] = addr >> 8;
cmd[2] = addr & 0xFF;
cmd[3] = 0;
SPI.transfer(cmd, 4); // TODO: why doesn't this work?
buf[i] = cmd[3];
addr++;
#endif
resetSS();
}
} else if (chip == 52) {
setSS();
cmd[0] = addr >> 8;
cmd[1] = addr & 0xFF;
cmd[2] = (len >> 8) & 0x7F;
cmd[3] = len & 0xFF;
SPI.transfer(cmd, 4);
memset(buf, 0, len);
SPI.transfer(buf, len);
resetSS();
} else { // chip == 55
setSS();
if (addr < 0x100) {
// common registers 00nn
cmd[0] = 0;
cmd[1] = addr & 0xFF;
cmd[2] = 0x00;
} else if (addr < 0x8000) {
// socket registers 10nn, 11nn, 12nn, 13nn, etc
cmd[0] = 0;
cmd[1] = addr & 0xFF;
cmd[2] = ((addr >> 3) & 0xE0) | 0x08;
} else if (addr < 0xC000) {
// transmit buffers 8000-87FF, 8800-8FFF, 9000-97FF, etc
// 10## #nnn nnnn nnnn
cmd[0] = addr >> 8;
cmd[1] = addr & 0xFF;
#if defined(ETHERNET_LARGE_BUFFERS) && MAX_SOCK_NUM <= 1
cmd[2] = 0x10; // 16K buffers
#elif defined(ETHERNET_LARGE_BUFFERS) && MAX_SOCK_NUM <= 2
cmd[2] = ((addr >> 8) & 0x20) | 0x10; // 8K buffers
#elif defined(ETHERNET_LARGE_BUFFERS) && MAX_SOCK_NUM <= 4
cmd[2] = ((addr >> 7) & 0x60) | 0x10; // 4K buffers
#else
cmd[2] = ((addr >> 6) & 0xE0) | 0x10; // 2K buffers
#endif
} else {
// receive buffers
cmd[0] = addr >> 8;
cmd[1] = addr & 0xFF;
#if defined(ETHERNET_LARGE_BUFFERS) && MAX_SOCK_NUM <= 1
cmd[2] = 0x18; // 16K buffers
#elif defined(ETHERNET_LARGE_BUFFERS) && MAX_SOCK_NUM <= 2
cmd[2] = ((addr >> 8) & 0x20) | 0x18; // 8K buffers
#elif defined(ETHERNET_LARGE_BUFFERS) && MAX_SOCK_NUM <= 4
cmd[2] = ((addr >> 7) & 0x60) | 0x18; // 4K buffers
#else
cmd[2] = ((addr >> 6) & 0xE0) | 0x18; // 2K buffers
#endif
}
SPI.transfer(cmd, 3);
memset(buf, 0, len);
SPI.transfer(buf, len);
resetSS();
}
return len;
}
void W5100Class::execCmdSn(SOCKET s, SockCMD _cmd)
{
// Send command to socket
writeSnCR(s, _cmd);
// Wait for command to complete
while (readSnCR(s)) ;
}

View File

@ -0,0 +1,466 @@
/*
* Copyright 2018 Paul Stoffregen
* Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
// w5100.h contains private W5x00 hardware "driver" level definitions
// which are not meant to be exposed to other libraries or Arduino users
#ifndef W5100_H_INCLUDED
#define W5100_H_INCLUDED
#include <Arduino.h>
#include <SPI.h>
// Safe for all chips
#define SPI_ETHERNET_SETTINGS SPISettings(14000000, MSBFIRST, SPI_MODE0)
// Safe for W5200 and W5500, but too fast for W5100
// Uncomment this if you know you'll never need W5100 support.
// Higher SPI clock only results in faster transfer to hosts on a LAN
// or with very low packet latency. With ordinary internet latency,
// the TCP window size & packet loss determine your overall speed.
//#define SPI_ETHERNET_SETTINGS SPISettings(30000000, MSBFIRST, SPI_MODE0)
// Require Ethernet.h, because we need MAX_SOCK_NUM
#ifndef ethernet_h_
#error "Ethernet.h must be included before w5100.h"
#endif
// Arduino 101's SPI can not run faster than 8 MHz.
#if defined(ARDUINO_ARCH_ARC32)
#undef SPI_ETHERNET_SETTINGS
#define SPI_ETHERNET_SETTINGS SPISettings(8000000, MSBFIRST, SPI_MODE0)
#endif
// Arduino Zero can't use W5100-based shields faster than 8 MHz
// https://github.com/arduino-libraries/Ethernet/issues/37#issuecomment-408036848
// W5500 does seem to work at 12 MHz. Delete this if only using W5500
#if defined(__SAMD21G18A__)
#undef SPI_ETHERNET_SETTINGS
#define SPI_ETHERNET_SETTINGS SPISettings(8000000, MSBFIRST, SPI_MODE0)
#endif
typedef uint8_t SOCKET;
class SnMR {
public:
static const uint8_t CLOSE = 0x00;
static const uint8_t TCP = 0x21;
static const uint8_t UDP = 0x02;
static const uint8_t IPRAW = 0x03;
static const uint8_t MACRAW = 0x04;
static const uint8_t PPPOE = 0x05;
static const uint8_t ND = 0x20;
static const uint8_t MULTI = 0x80;
};
enum SockCMD {
Sock_OPEN = 0x01,
Sock_LISTEN = 0x02,
Sock_CONNECT = 0x04,
Sock_DISCON = 0x08,
Sock_CLOSE = 0x10,
Sock_SEND = 0x20,
Sock_SEND_MAC = 0x21,
Sock_SEND_KEEP = 0x22,
Sock_RECV = 0x40
};
class SnIR {
public:
static const uint8_t SEND_OK = 0x10;
static const uint8_t TIMEOUT = 0x08;
static const uint8_t RECV = 0x04;
static const uint8_t DISCON = 0x02;
static const uint8_t CON = 0x01;
};
class SnSR {
public:
static const uint8_t CLOSED = 0x00;
static const uint8_t INIT = 0x13;
static const uint8_t LISTEN = 0x14;
static const uint8_t SYNSENT = 0x15;
static const uint8_t SYNRECV = 0x16;
static const uint8_t ESTABLISHED = 0x17;
static const uint8_t FIN_WAIT = 0x18;
static const uint8_t CLOSING = 0x1A;
static const uint8_t TIME_WAIT = 0x1B;
static const uint8_t CLOSE_WAIT = 0x1C;
static const uint8_t LAST_ACK = 0x1D;
static const uint8_t UDP = 0x22;
static const uint8_t IPRAW = 0x32;
static const uint8_t MACRAW = 0x42;
static const uint8_t PPPOE = 0x5F;
};
class IPPROTO {
public:
static const uint8_t IP = 0;
static const uint8_t ICMP = 1;
static const uint8_t IGMP = 2;
static const uint8_t GGP = 3;
static const uint8_t TCP = 6;
static const uint8_t PUP = 12;
static const uint8_t UDP = 17;
static const uint8_t IDP = 22;
static const uint8_t ND = 77;
static const uint8_t RAW = 255;
};
enum W5100Linkstatus {
UNKNOWN,
LINK_ON,
LINK_OFF
};
class W5100Class {
public:
static uint8_t init(void);
inline void setGatewayIp(const uint8_t * addr) { writeGAR(addr); }
inline void getGatewayIp(uint8_t * addr) { readGAR(addr); }
inline void setSubnetMask(const uint8_t * addr) { writeSUBR(addr); }
inline void getSubnetMask(uint8_t * addr) { readSUBR(addr); }
inline void setMACAddress(const uint8_t * addr) { writeSHAR(addr); }
inline void getMACAddress(uint8_t * addr) { readSHAR(addr); }
inline void setIPAddress(const uint8_t * addr) { writeSIPR(addr); }
inline void getIPAddress(uint8_t * addr) { readSIPR(addr); }
inline void setRetransmissionTime(uint16_t timeout) { writeRTR(timeout); }
inline void setRetransmissionCount(uint8_t retry) { writeRCR(retry); }
static void execCmdSn(SOCKET s, SockCMD _cmd);
// W5100 Registers
// ---------------
//private:
public:
static uint16_t write(uint16_t addr, const uint8_t *buf, uint16_t len);
static uint8_t write(uint16_t addr, uint8_t data) {
return write(addr, &data, 1);
}
static uint16_t read(uint16_t addr, uint8_t *buf, uint16_t len);
static uint8_t read(uint16_t addr) {
uint8_t data;
read(addr, &data, 1);
return data;
}
#define __GP_REGISTER8(name, address) \
static inline void write##name(uint8_t _data) { \
write(address, _data); \
} \
static inline uint8_t read##name() { \
return read(address); \
}
#define __GP_REGISTER16(name, address) \
static void write##name(uint16_t _data) { \
uint8_t buf[2]; \
buf[0] = _data >> 8; \
buf[1] = _data & 0xFF; \
write(address, buf, 2); \
} \
static uint16_t read##name() { \
uint8_t buf[2]; \
read(address, buf, 2); \
return (buf[0] << 8) | buf[1]; \
}
#define __GP_REGISTER_N(name, address, size) \
static uint16_t write##name(const uint8_t *_buff) { \
return write(address, _buff, size); \
} \
static uint16_t read##name(uint8_t *_buff) { \
return read(address, _buff, size); \
}
static W5100Linkstatus getLinkStatus();
public:
__GP_REGISTER8 (MR, 0x0000); // Mode
__GP_REGISTER_N(GAR, 0x0001, 4); // Gateway IP address
__GP_REGISTER_N(SUBR, 0x0005, 4); // Subnet mask address
__GP_REGISTER_N(SHAR, 0x0009, 6); // Source MAC address
__GP_REGISTER_N(SIPR, 0x000F, 4); // Source IP address
__GP_REGISTER8 (IR, 0x0015); // Interrupt
__GP_REGISTER8 (IMR, 0x0016); // Interrupt Mask
__GP_REGISTER16(RTR, 0x0017); // Timeout address
__GP_REGISTER8 (RCR, 0x0019); // Retry count
__GP_REGISTER8 (RMSR, 0x001A); // Receive memory size (W5100 only)
__GP_REGISTER8 (TMSR, 0x001B); // Transmit memory size (W5100 only)
__GP_REGISTER8 (PATR, 0x001C); // Authentication type address in PPPoE mode
__GP_REGISTER8 (PTIMER, 0x0028); // PPP LCP Request Timer
__GP_REGISTER8 (PMAGIC, 0x0029); // PPP LCP Magic Number
__GP_REGISTER_N(UIPR, 0x002A, 4); // Unreachable IP address in UDP mode (W5100 only)
__GP_REGISTER16(UPORT, 0x002E); // Unreachable Port address in UDP mode (W5100 only)
__GP_REGISTER8 (VERSIONR_W5200,0x001F); // Chip Version Register (W5200 only)
__GP_REGISTER8 (VERSIONR_W5500,0x0039); // Chip Version Register (W5500 only)
__GP_REGISTER8 (PSTATUS_W5200, 0x0035); // PHY Status
__GP_REGISTER8 (PHYCFGR_W5500, 0x002E); // PHY Configuration register, default: 10111xxx
#undef __GP_REGISTER8
#undef __GP_REGISTER16
#undef __GP_REGISTER_N
// W5100 Socket registers
// ----------------------
private:
static uint16_t CH_BASE(void) {
//if (chip == 55) return 0x1000;
//if (chip == 52) return 0x4000;
//return 0x0400;
return CH_BASE_MSB << 8;
}
static uint8_t CH_BASE_MSB; // 1 redundant byte, saves ~80 bytes code on AVR
static const uint16_t CH_SIZE = 0x0100;
static inline uint8_t readSn(SOCKET s, uint16_t addr) {
return read(CH_BASE() + s * CH_SIZE + addr);
}
static inline uint8_t writeSn(SOCKET s, uint16_t addr, uint8_t data) {
return write(CH_BASE() + s * CH_SIZE + addr, data);
}
static inline uint16_t readSn(SOCKET s, uint16_t addr, uint8_t *buf, uint16_t len) {
return read(CH_BASE() + s * CH_SIZE + addr, buf, len);
}
static inline uint16_t writeSn(SOCKET s, uint16_t addr, uint8_t *buf, uint16_t len) {
return write(CH_BASE() + s * CH_SIZE + addr, buf, len);
}
#define __SOCKET_REGISTER8(name, address) \
static inline void write##name(SOCKET _s, uint8_t _data) { \
writeSn(_s, address, _data); \
} \
static inline uint8_t read##name(SOCKET _s) { \
return readSn(_s, address); \
}
#define __SOCKET_REGISTER16(name, address) \
static void write##name(SOCKET _s, uint16_t _data) { \
uint8_t buf[2]; \
buf[0] = _data >> 8; \
buf[1] = _data & 0xFF; \
writeSn(_s, address, buf, 2); \
} \
static uint16_t read##name(SOCKET _s) { \
uint8_t buf[2]; \
readSn(_s, address, buf, 2); \
return (buf[0] << 8) | buf[1]; \
}
#define __SOCKET_REGISTER_N(name, address, size) \
static uint16_t write##name(SOCKET _s, uint8_t *_buff) { \
return writeSn(_s, address, _buff, size); \
} \
static uint16_t read##name(SOCKET _s, uint8_t *_buff) { \
return readSn(_s, address, _buff, size); \
}
public:
__SOCKET_REGISTER8(SnMR, 0x0000) // Mode
__SOCKET_REGISTER8(SnCR, 0x0001) // Command
__SOCKET_REGISTER8(SnIR, 0x0002) // Interrupt
__SOCKET_REGISTER8(SnSR, 0x0003) // Status
__SOCKET_REGISTER16(SnPORT, 0x0004) // Source Port
__SOCKET_REGISTER_N(SnDHAR, 0x0006, 6) // Destination Hardw Addr
__SOCKET_REGISTER_N(SnDIPR, 0x000C, 4) // Destination IP Addr
__SOCKET_REGISTER16(SnDPORT, 0x0010) // Destination Port
__SOCKET_REGISTER16(SnMSSR, 0x0012) // Max Segment Size
__SOCKET_REGISTER8(SnPROTO, 0x0014) // Protocol in IP RAW Mode
__SOCKET_REGISTER8(SnTOS, 0x0015) // IP TOS
__SOCKET_REGISTER8(SnTTL, 0x0016) // IP TTL
__SOCKET_REGISTER8(SnRX_SIZE, 0x001E) // RX Memory Size (W5200 only)
__SOCKET_REGISTER8(SnTX_SIZE, 0x001F) // RX Memory Size (W5200 only)
__SOCKET_REGISTER16(SnTX_FSR, 0x0020) // TX Free Size
__SOCKET_REGISTER16(SnTX_RD, 0x0022) // TX Read Pointer
__SOCKET_REGISTER16(SnTX_WR, 0x0024) // TX Write Pointer
__SOCKET_REGISTER16(SnRX_RSR, 0x0026) // RX Free Size
__SOCKET_REGISTER16(SnRX_RD, 0x0028) // RX Read Pointer
__SOCKET_REGISTER16(SnRX_WR, 0x002A) // RX Write Pointer (supported?)
#undef __SOCKET_REGISTER8
#undef __SOCKET_REGISTER16
#undef __SOCKET_REGISTER_N
private:
static uint8_t chip;
static uint8_t ss_pin;
static uint8_t softReset(void);
static uint8_t isW5100(void);
static uint8_t isW5200(void);
static uint8_t isW5500(void);
public:
static uint8_t getChip(void) { return chip; }
#ifdef ETHERNET_LARGE_BUFFERS
static uint16_t SSIZE;
static uint16_t SMASK;
#else
static const uint16_t SSIZE = 2048;
static const uint16_t SMASK = 0x07FF;
#endif
static uint16_t SBASE(uint8_t socknum) {
if (chip == 51) {
return socknum * SSIZE + 0x4000;
} else {
return socknum * SSIZE + 0x8000;
}
}
static uint16_t RBASE(uint8_t socknum) {
if (chip == 51) {
return socknum * SSIZE + 0x6000;
} else {
return socknum * SSIZE + 0xC000;
}
}
static bool hasOffsetAddressMapping(void) {
if (chip == 55) return true;
return false;
}
static void setSS(uint8_t pin) { ss_pin = pin; }
private:
#if defined(__AVR__)
static volatile uint8_t *ss_pin_reg;
static uint8_t ss_pin_mask;
inline static void initSS() {
ss_pin_reg = portOutputRegister(digitalPinToPort(ss_pin));
ss_pin_mask = digitalPinToBitMask(ss_pin);
pinMode(ss_pin, OUTPUT);
}
inline static void setSS() {
*(ss_pin_reg) &= ~ss_pin_mask;
}
inline static void resetSS() {
*(ss_pin_reg) |= ss_pin_mask;
}
#elif defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK66FX1M0__) || defined(__MK64FX512__)
static volatile uint8_t *ss_pin_reg;
inline static void initSS() {
ss_pin_reg = portOutputRegister(ss_pin);
pinMode(ss_pin, OUTPUT);
}
inline static void setSS() {
*(ss_pin_reg+256) = 1;
}
inline static void resetSS() {
*(ss_pin_reg+128) = 1;
}
#elif defined(__MKL26Z64__)
static volatile uint8_t *ss_pin_reg;
static uint8_t ss_pin_mask;
inline static void initSS() {
ss_pin_reg = portOutputRegister(digitalPinToPort(ss_pin));
ss_pin_mask = digitalPinToBitMask(ss_pin);
pinMode(ss_pin, OUTPUT);
}
inline static void setSS() {
*(ss_pin_reg+8) = ss_pin_mask;
}
inline static void resetSS() {
*(ss_pin_reg+4) = ss_pin_mask;
}
#elif defined(__SAM3X8E__) || defined(__SAM3A8C__) || defined(__SAM3A4C__)
static volatile uint32_t *ss_pin_reg;
static uint32_t ss_pin_mask;
inline static void initSS() {
ss_pin_reg = &(digitalPinToPort(ss_pin)->PIO_PER);
ss_pin_mask = digitalPinToBitMask(ss_pin);
pinMode(ss_pin, OUTPUT);
}
inline static void setSS() {
*(ss_pin_reg+13) = ss_pin_mask;
}
inline static void resetSS() {
*(ss_pin_reg+12) = ss_pin_mask;
}
#elif defined(__PIC32MX__)
static volatile uint32_t *ss_pin_reg;
static uint32_t ss_pin_mask;
inline static void initSS() {
ss_pin_reg = portModeRegister(digitalPinToPort(ss_pin));
ss_pin_mask = digitalPinToBitMask(ss_pin);
pinMode(ss_pin, OUTPUT);
}
inline static void setSS() {
*(ss_pin_reg+8+1) = ss_pin_mask;
}
inline static void resetSS() {
*(ss_pin_reg+8+2) = ss_pin_mask;
}
#elif defined(ARDUINO_ARCH_ESP8266)
static volatile uint32_t *ss_pin_reg;
static uint32_t ss_pin_mask;
inline static void initSS() {
ss_pin_reg = (volatile uint32_t*)GPO;
ss_pin_mask = 1 << ss_pin;
pinMode(ss_pin, OUTPUT);
}
inline static void setSS() {
GPOC = ss_pin_mask;
}
inline static void resetSS() {
GPOS = ss_pin_mask;
}
#elif defined(__SAMD21G18A__)
static volatile uint32_t *ss_pin_reg;
static uint32_t ss_pin_mask;
inline static void initSS() {
ss_pin_reg = portModeRegister(digitalPinToPort(ss_pin));
ss_pin_mask = digitalPinToBitMask(ss_pin);
pinMode(ss_pin, OUTPUT);
}
inline static void setSS() {
*(ss_pin_reg+5) = ss_pin_mask;
}
inline static void resetSS() {
*(ss_pin_reg+6) = ss_pin_mask;
}
#else
inline static void initSS() {
pinMode(ss_pin, OUTPUT);
}
inline static void setSS() {
digitalWrite(ss_pin, LOW);
}
inline static void resetSS() {
digitalWrite(ss_pin, HIGH);
}
#endif
};
extern W5100Class W5100;
#endif
#ifndef UTIL_H
#define UTIL_H
#define htons(x) ( (((x)<<8)&0xFF00) | (((x)>>8)&0xFF) )
#define ntohs(x) htons(x)
#define htonl(x) ( ((x)<<24 & 0xFF000000UL) | \
((x)<< 8 & 0x00FF0000UL) | \
((x)>> 8 & 0x0000FF00UL) | \
((x)>>24 & 0x000000FFUL) )
#define ntohl(x) htonl(x)
#endif

953
libraries/Firmata/Boards.h Normal file
View File

@ -0,0 +1,953 @@
/*
Boards.h - Hardware Abstraction Layer for Firmata library
Copyright (c) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2009-2017 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
Last updated April 15th, 2018
*/
#ifndef Firmata_Boards_h
#define Firmata_Boards_h
#include <inttypes.h>
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h" // for digitalRead, digitalWrite, etc
#else
#include "WProgram.h"
#endif
// Normally Servo.h must be included before Firmata.h (which then includes
// this file). If Servo.h wasn't included, this allows the code to still
// compile, but without support for any Servos. Hopefully that's what the
// user intended by not including Servo.h
#ifndef MAX_SERVOS
#define MAX_SERVOS 0
#endif
/*
Firmata Hardware Abstraction Layer
Firmata is built on top of the hardware abstraction functions of Arduino,
specifically digitalWrite, digitalRead, analogWrite, analogRead, and
pinMode. While these functions offer simple integer pin numbers, Firmata
needs more information than is provided by Arduino. This file provides
all other hardware specific details. To make Firmata support a new board,
only this file should require editing.
The key concept is every "pin" implemented by Firmata may be mapped to
any pin as implemented by Arduino. Usually a simple 1-to-1 mapping is
best, but such mapping should not be assumed. This hardware abstraction
layer allows Firmata to implement any number of pins which map onto the
Arduino implemented pins in almost any arbitrary way.
General Constants:
These constants provide basic information Firmata requires.
TOTAL_PINS: The total number of pins Firmata implemented by Firmata.
Usually this will match the number of pins the Arduino functions
implement, including any pins pins capable of analog or digital.
However, Firmata may implement any number of pins. For example,
on Arduino Mini with 8 analog inputs, 6 of these may be used
for digital functions, and 2 are analog only. On such boards,
Firmata can implement more pins than Arduino's pinMode()
function, in order to accommodate those special pins. The
Firmata protocol supports a maximum of 128 pins, so this
constant must not exceed 128.
TOTAL_ANALOG_PINS: The total number of analog input pins implemented.
The Firmata protocol allows up to 16 analog inputs, accessed
using offsets 0 to 15. Because Firmata presents the analog
inputs using different offsets than the actual pin numbers
(a legacy of Arduino's analogRead function, and the way the
analog input capable pins are physically labeled on all
Arduino boards), the total number of analog input signals
must be specified. 16 is the maximum.
VERSION_BLINK_PIN: When Firmata starts up, it will blink the version
number. This constant is the Arduino pin number where a
LED is connected.
Pin Mapping Macros:
These macros provide the mapping between pins as implemented by
Firmata protocol and the actual pin numbers used by the Arduino
functions. Even though such mappings are often simple, pin
numbers received by Firmata protocol should always be used as
input to these macros, and the result of the macro should be
used with with any Arduino function.
When Firmata is extended to support a new pin mode or feature,
a pair of macros should be added and used for all hardware
access. For simple 1:1 mapping, these macros add no actual
overhead, yet their consistent use allows source code which
uses them consistently to be easily adapted to all other boards
with different requirements.
IS_PIN_XXXX(pin): The IS_PIN macros resolve to true or non-zero
if a pin as implemented by Firmata corresponds to a pin
that actually implements the named feature.
PIN_TO_XXXX(pin): The PIN_TO macros translate pin numbers as
implemented by Firmata to the pin numbers needed as inputs
to the Arduino functions. The corresponding IS_PIN macro
should always be tested before using a PIN_TO macro, so
these macros only need to handle valid Firmata pin
numbers for the named feature.
Port Access Inline Funtions:
For efficiency, Firmata protocol provides access to digital
input and output pins grouped by 8 bit ports. When these
groups of 8 correspond to actual 8 bit ports as implemented
by the hardware, these inline functions can provide high
speed direct port access. Otherwise, a default implementation
using 8 calls to digitalWrite or digitalRead is used.
When porting Firmata to a new board, it is recommended to
use the default functions first and focus only on the constants
and macros above. When those are working, if optimized port
access is desired, these inline functions may be extended.
The recommended approach defines a symbol indicating which
optimization to use, and then conditional complication is
used within these functions.
readPort(port, bitmask): Read an 8 bit port, returning the value.
port: The port number, Firmata pins port*8 to port*8+7
bitmask: The actual pins to read, indicated by 1 bits.
writePort(port, value, bitmask): Write an 8 bit port.
port: The port number, Firmata pins port*8 to port*8+7
value: The 8 bit value to write
bitmask: The actual pins to write, indicated by 1 bits.
*/
/*==============================================================================
* Board Specific Configuration
*============================================================================*/
#ifndef digitalPinHasPWM
#define digitalPinHasPWM(p) IS_PIN_DIGITAL(p)
#endif
// Arduino Duemilanove, Diecimila, and NG
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__) || defined(__AVR_ATmega328__)
#if defined(NUM_ANALOG_INPUTS) && NUM_ANALOG_INPUTS == 6
#define TOTAL_ANALOG_PINS 6
#define TOTAL_PINS 20 // 14 digital + 6 analog
#else
#define TOTAL_ANALOG_PINS 8
#define TOTAL_PINS 22 // 14 digital + 8 analog
#endif
#define VERSION_BLINK_PIN 13
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) <= 19)
#define IS_PIN_ANALOG(p) ((p) >= 14 && (p) < 14 + TOTAL_ANALOG_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) - 2 < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 18 || (p) == 19)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 14)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
#define ARDUINO_PINOUT_OPTIMIZE 1
// Wiring (and board)
#elif defined(WIRING)
#define VERSION_BLINK_PIN WLED
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= FIRST_ANALOG_PIN && (p) < (FIRST_ANALOG_PIN+TOTAL_ANALOG_PINS))
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == SDA || (p) == SCL)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - FIRST_ANALOG_PIN)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// old Arduinos
#elif defined(__AVR_ATmega8__)
#define TOTAL_ANALOG_PINS 6
#define TOTAL_PINS 20 // 14 digital + 6 analog
#define VERSION_BLINK_PIN 13
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) <= 19)
#define IS_PIN_ANALOG(p) ((p) >= 14 && (p) <= 19)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) - 2 < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 18 || (p) == 19)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 14)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
#define ARDUINO_PINOUT_OPTIMIZE 1
// Arduino Mega
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TOTAL_ANALOG_PINS 16
#define TOTAL_PINS 70 // 54 digital + 16 analog
#define VERSION_BLINK_PIN 13
#define PIN_SERIAL1_RX 19
#define PIN_SERIAL1_TX 18
#define PIN_SERIAL2_RX 17
#define PIN_SERIAL2_TX 16
#define PIN_SERIAL3_RX 15
#define PIN_SERIAL3_TX 14
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 54 && (p) < TOTAL_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 2 && (p) - 2 < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 20 || (p) == 21)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_SERIAL(p) ((p) > 13 && (p) < 20)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 54)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
// Arduino DUE
#elif defined(__SAM3X8E__)
#define TOTAL_ANALOG_PINS 12
#define TOTAL_PINS 66 // 54 digital + 12 analog
#define VERSION_BLINK_PIN 13
#define PIN_SERIAL1_RX 19
#define PIN_SERIAL1_TX 18
#define PIN_SERIAL2_RX 17
#define PIN_SERIAL2_TX 16
#define PIN_SERIAL3_RX 15
#define PIN_SERIAL3_TX 14
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 54 && (p) < TOTAL_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 2 && (p) - 2 < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 20 || (p) == 21) // 70 71
#define IS_PIN_SERIAL(p) ((p) > 13 && (p) < 20)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 54)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
// Arduino/Genuino MKR1000
#elif defined(ARDUINO_SAMD_MKR1000)
#define TOTAL_ANALOG_PINS 7
#define TOTAL_PINS 22 // 8 digital + 3 spi + 2 i2c + 2 uart + 7 analog
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) <= 21)
#define IS_PIN_ANALOG(p) ((p) >= 15 && (p) < 15 + TOTAL_ANALOG_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) < MAX_SERVOS) // deprecated since v2.4
#define IS_PIN_I2C(p) ((p) == 11 || (p) == 12) // SDA = 11, SCL = 12
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_SERIAL(p) ((p) == PIN_SERIAL1_RX || (p) == PIN_SERIAL1_TX) //defined in variant.h RX = 13, TX = 14
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 15)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p) // deprecated since v2.4
// Arduino MKRZero
#elif defined(ARDUINO_SAMD_MKRZERO)
#define TOTAL_ANALOG_PINS 7
#define TOTAL_PINS 34 // 8 digital + 3 spi + 2 i2c + 2 uart + 7 analog + 3 usb + 1 aref + 5 sd + 1 bottom pad + 1 led + 1 battery adc
#define IS_PIN_DIGITAL(p) (((p) >= 0 && (p) <= 21) || (p) == 32)
#define IS_PIN_ANALOG(p) (((p) >= 15 && (p) < 15 + TOTAL_ANALOG_PINS) || (p) == 33)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) < MAX_SERVOS) // deprecated since v2.4
#define IS_PIN_I2C(p) ((p) == 11 || (p) == 12) // SDA = 11, SCL = 12
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_SERIAL(p) ((p) == PIN_SERIAL1_RX || (p) == PIN_SERIAL1_TX) //defined in variant.h RX = 13, TX = 14
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 15)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p) // deprecated since v2.4
// Arduino MKRFox1200
#elif defined(ARDUINO_SAMD_MKRFox1200)
#define TOTAL_ANALOG_PINS 7
#define TOTAL_PINS 33 // 8 digital + 3 spi + 2 i2c + 2 uart + 7 analog + 3 usb + 1 aref + 5 sd + 1 bottom pad + 1 battery adc
#define IS_PIN_DIGITAL(p) (((p) >= 0 && (p) <= 21))
#define IS_PIN_ANALOG(p) (((p) >= 15 && (p) < 15 + TOTAL_ANALOG_PINS) || (p) == 32)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) < MAX_SERVOS) // deprecated since v2.4
#define IS_PIN_I2C(p) ((p) == 11 || (p) == 12) // SDA = 11, SCL = 12
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_SERIAL(p) ((p) == PIN_SERIAL1_RX || (p) == PIN_SERIAL1_TX) //defined in variant.h RX = 13, TX = 14
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 15)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p) // deprecated since v2.4
// Arduino MKR WAN 1300
#elif defined(ARDUINO_SAMD_MKRWAN1300)
#define TOTAL_ANALOG_PINS 7
#define TOTAL_PINS 33
#define IS_PIN_DIGITAL(p) (((p) >= 0 && (p) <= 21))
#define IS_PIN_ANALOG(p) (((p) >= 15 && (p) < 15 + TOTAL_ANALOG_PINS) || (p) == 32)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) < MAX_SERVOS) // deprecated since v2.4
#define IS_PIN_I2C(p) ((p) == 11 || (p) == 12) // SDA = 11, SCL = 12
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_SERIAL(p) ((p) == PIN_SERIAL1_RX || (p) == PIN_SERIAL1_TX) //defined in variant.h RX = 13, TX = 14
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 15)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p) // deprecated since v2.4
// Arduino MKR GSM 1400
#elif defined(ARDUINO_SAMD_MKRGSM1400)
#define TOTAL_ANALOG_PINS 7
#define TOTAL_PINS 33
#define IS_PIN_DIGITAL(p) (((p) >= 0 && (p) <= 21))
#define IS_PIN_ANALOG(p) (((p) >= 15 && (p) < 15 + TOTAL_ANALOG_PINS) || (p) == 32)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) < MAX_SERVOS) // deprecated since v2.4
#define IS_PIN_I2C(p) ((p) == 11 || (p) == 12) // SDA = 11, SCL = 12
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_SERIAL(p) ((p) == PIN_SERIAL1_RX || (p) == PIN_SERIAL1_TX) //defined in variant.h RX = 13, TX = 14
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 15)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p) // deprecated since v2.4
// Arduino Zero
// Note this will work with an Arduino Zero Pro, but not with an Arduino M0 Pro
// Arduino M0 Pro does not properly map pins to the board labeled pin numbers
#elif defined(_VARIANT_ARDUINO_ZERO_)
#define TOTAL_ANALOG_PINS 6
#define TOTAL_PINS 25 // 14 digital + 6 analog + 2 i2c + 3 spi
#define TOTAL_PORTS 3 // set when TOTAL_PINS > num digitial I/O pins
#define VERSION_BLINK_PIN LED_BUILTIN
//#define PIN_SERIAL1_RX 0 // already defined in zero core variant.h
//#define PIN_SERIAL1_TX 1 // already defined in zero core variant.h
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) <= 19)
#define IS_PIN_ANALOG(p) ((p) >= 14 && (p) < 14 + TOTAL_ANALOG_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) < MAX_SERVOS) // deprecated since v2.4
#define IS_PIN_I2C(p) ((p) == 20 || (p) == 21) // SDA = 20, SCL = 21
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK) // SS = A2
#define IS_PIN_SERIAL(p) ((p) == 0 || (p) == 1)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 14)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p) // deprecated since v2.4
// Arduino Primo
#elif defined(ARDUINO_PRIMO)
#define TOTAL_ANALOG_PINS 6
#define TOTAL_PINS 22 //14 digital + 6 analog + 2 i2c
#define VERSION_BLINK_PIN LED_BUILTIN
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) < 20)
#define IS_PIN_ANALOG(p) ((p) >= 14 && (p) < 20)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) < MAX_SERVOS+2)
#define IS_PIN_I2C(p) ((p) == PIN_WIRE_SDA || (p) == PIN_WIRE_SCL) // SDA = 20, SCL = 21
#define IS_PIN_SPI(p) ((p) == SS || (p)== MOSI || (p) == MISO || (p == SCK)) // 10, 11, 12, 13
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 14)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Arduino 101
#elif defined(_VARIANT_ARDUINO_101_X_)
#define TOTAL_ANALOG_PINS NUM_ANALOG_INPUTS
#define TOTAL_PINS NUM_DIGITAL_PINS // 15 digital (including ATN pin) + 6 analog
#define VERSION_BLINK_PIN LED_BUILTIN
#define PIN_SERIAL1_RX 0
#define PIN_SERIAL1_TX 1
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) <= 20)
#define IS_PIN_ANALOG(p) ((p) >= 14 && (p) < 14 + TOTAL_ANALOG_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p) // 3, 5, 6, 9
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) < MAX_SERVOS) // deprecated since v2.4
#define IS_PIN_I2C(p) ((p) == SDA || (p) == SCL) // SDA = 18, SCL = 19
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_SERIAL(p) ((p) == 0 || (p) == 1)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 14)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p) // deprecated since v2.4
// Teensy 1.0
#elif defined(__AVR_AT90USB162__)
#define TOTAL_ANALOG_PINS 0
#define TOTAL_PINS 21 // 21 digital + no analog
#define VERSION_BLINK_PIN 6
#define PIN_SERIAL1_RX 2
#define PIN_SERIAL1_TX 3
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) (0)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) (0)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_SERIAL(p) ((p) == 2 || (p) == 3)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) (0)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Teensy 2.0
#elif defined(__AVR_ATmega32U4__) && defined(CORE_TEENSY)
#define TOTAL_ANALOG_PINS 12
#define TOTAL_PINS 25 // 11 digital + 12 analog
#define VERSION_BLINK_PIN 11
#define PIN_SERIAL1_RX 7
#define PIN_SERIAL1_TX 8
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 11 && (p) <= 22)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 5 || (p) == 6)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_SERIAL(p) ((p) == 7 || (p) == 8)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) (((p) < 22) ? 21 - (p) : 11)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Teensy 3.5 and 3.6
// reference: https://github.com/PaulStoffregen/cores/blob/master/teensy3/pins_arduino.h
#elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
#define TOTAL_ANALOG_PINS 27 // 3.5 has 27 and 3.6 has 25
#define TOTAL_PINS 70 // 43 digital + 21 analog-digital + 6 analog (64-69)
#define VERSION_BLINK_PIN 13
#define PIN_SERIAL1_RX 0
#define PIN_SERIAL1_TX 1
#define PIN_SERIAL2_RX 9
#define PIN_SERIAL2_TX 10
#define PIN_SERIAL3_RX 7
#define PIN_SERIAL3_TX 8
#define PIN_SERIAL4_RX 31
#define PIN_SERIAL4_TX 32
#define PIN_SERIAL5_RX 34
#define PIN_SERIAL5_TX 33
#define PIN_SERIAL6_RX 47
#define PIN_SERIAL6_TX 48
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) <= 63)
#define IS_PIN_ANALOG(p) (((p) >= 14 && (p) <= 23) || ((p) >= 31 && (p) <= 39) || ((p) >= 49 && (p) <= 50) || ((p) >= 64 && (p) <= 69))
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 18 || (p) == 19)
#define IS_PIN_SERIAL(p) (((p) > 6 && (p) < 11) || ((p) == 0 || (p) == 1) || ((p) > 30 && (p) < 35) || ((p) == 47 || (p) == 48))
#define PIN_TO_DIGITAL(p) (p)
// A0-A9 = D14-D23; A12-A20 = D31-D39; A23-A24 = D49-D50; A10-A11 = D64-D65; A21-A22 = D66-D67; A25-A26 = D68-D69
#define PIN_TO_ANALOG(p) (((p) <= 23) ? (p) - 14 : (((p) <= 39) ? (p) - 19 : (((p) <= 50) ? (p) - 26 : (((p) <= 65) ? (p) - 55 : (((p) <= 67) ? (p) - 45 : (p) - 43)))))
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Teensy 3.0, 3.1 and 3.2
#elif defined(__MK20DX128__) || defined(__MK20DX256__)
#define TOTAL_ANALOG_PINS 14
#define TOTAL_PINS 38 // 24 digital + 10 analog-digital + 4 analog
#define VERSION_BLINK_PIN 13
#define PIN_SERIAL1_RX 0
#define PIN_SERIAL1_TX 1
#define PIN_SERIAL2_RX 9
#define PIN_SERIAL2_TX 10
#define PIN_SERIAL3_RX 7
#define PIN_SERIAL3_TX 8
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) <= 33)
#define IS_PIN_ANALOG(p) (((p) >= 14 && (p) <= 23) || ((p) >= 34 && (p) <= 38))
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 18 || (p) == 19)
#define IS_PIN_SERIAL(p) (((p) > 6 && (p) < 11) || ((p) == 0 || (p) == 1))
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) (((p) <= 23) ? (p) - 14 : (p) - 24)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Teensy-LC
#elif defined(__MKL26Z64__)
#define TOTAL_ANALOG_PINS 13
#define TOTAL_PINS 27 // 27 digital + 13 analog-digital
#define VERSION_BLINK_PIN 13
#define PIN_SERIAL1_RX 0
#define PIN_SERIAL1_TX 1
#define PIN_SERIAL2_RX 9
#define PIN_SERIAL2_TX 10
#define PIN_SERIAL3_RX 7
#define PIN_SERIAL3_TX 8
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) <= 26)
#define IS_PIN_ANALOG(p) ((p) >= 14)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 18 || (p) == 19)
#define IS_PIN_SERIAL(p) (((p) > 6 && (p) < 11) || ((p) == 0 || (p) == 1))
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 14)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Teensy++ 1.0 and 2.0
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define TOTAL_ANALOG_PINS 8
#define TOTAL_PINS 46 // 38 digital + 8 analog
#define VERSION_BLINK_PIN 6
#define PIN_SERIAL1_RX 2
#define PIN_SERIAL1_TX 3
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 38 && (p) < TOTAL_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 0 || (p) == 1)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_SERIAL(p) ((p) == 2 || (p) == 3)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 38)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Leonardo
#elif defined(__AVR_ATmega32U4__)
#define TOTAL_ANALOG_PINS 12
#define TOTAL_PINS 30 // 14 digital + 12 analog + 4 SPI (D14-D17 on ISP header)
#define VERSION_BLINK_PIN 13
#define PIN_SERIAL1_RX 0
#define PIN_SERIAL1_TX 1
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 18 && (p) < TOTAL_PINS)
#define IS_PIN_PWM(p) ((p) == 3 || (p) == 5 || (p) == 6 || (p) == 9 || (p) == 10 || (p) == 11 || (p) == 13)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 2 || (p) == 3)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_SERIAL(p) ((p) == 0 || (p) == 1)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) (p) - 18
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Intel Galileo Board (gen 1 and 2) and Intel Edison
#elif defined(ARDUINO_LINUX)
#define TOTAL_ANALOG_PINS 6
#define TOTAL_PINS 20 // 14 digital + 6 analog
#define VERSION_BLINK_PIN 13
#define PIN_SERIAL1_RX 0
#define PIN_SERIAL1_TX 1
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) <= 19)
#define IS_PIN_ANALOG(p) ((p) >= 14 && (p) <= 19)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) - 2 < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == SDA || (p) == SCL)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_SERIAL(p) ((p) == 0 || (p) == 1)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 14)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
// RedBearLab BLE Nano with factory switch settings (S1 - S10)
#elif defined(BLE_NANO)
#define TOTAL_ANALOG_PINS 6
#define TOTAL_PINS 15 // 9 digital + 3 analog
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) <= 14)
#define IS_PIN_ANALOG(p) ((p) == 8 || (p) == 9 || (p) == 10 || (p) == 11 || (p) == 12 || (p) == 14) //A0~A5
#define IS_PIN_PWM(p) ((p) == 3 || (p) == 5 || (p) == 6)
#define IS_PIN_SERVO(p) ((p) >= 2 && (p) <= 7)
#define IS_PIN_I2C(p) ((p) == SDA || (p) == SCL)
#define IS_PIN_SPI(p) ((p) == CS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 8)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Sanguino
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
#define TOTAL_ANALOG_PINS 8
#define TOTAL_PINS 32 // 24 digital + 8 analog
#define VERSION_BLINK_PIN 0
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 24 && (p) < TOTAL_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 16 || (p) == 17)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 24)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
// Illuminato
#elif defined(__AVR_ATmega645__)
#define TOTAL_ANALOG_PINS 6
#define TOTAL_PINS 42 // 36 digital + 6 analog
#define VERSION_BLINK_PIN 13
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 36 && (p) < TOTAL_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 4 || (p) == 5)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 36)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
// Pic32 chipKIT FubarinoSD
#elif defined(_BOARD_FUBARINO_SD_)
#define TOTAL_ANALOG_PINS NUM_ANALOG_PINS // 15
#define TOTAL_PINS NUM_DIGITAL_PINS // 45, All pins can be digital
#define MAX_SERVOS NUM_DIGITAL_PINS
#define VERSION_BLINK_PIN PIN_LED1
#define IS_PIN_DIGITAL(p) 1
#define IS_PIN_ANALOG(p) ((p) >= 30 && (p) <= 44)
#define IS_PIN_PWM(p) IS_PIN_DIGITAL(p)
#define IS_PIN_SERVO(p) IS_PIN_DIGITAL(p)
#define IS_PIN_I2C(p) ((p) == 1 || (p) == 2)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) (14 - (p - 30))
#define PIN_TO_PWM(p) (p)
#define PIN_TO_SERVO(p) (p)
// Pic32 chipKIT FubarinoMini
// Note, FubarinoMini analog pin 20 will not function in Firmata as analog input due to limitation in analog mapping
#elif defined(_BOARD_FUBARINO_MINI_)
#define TOTAL_ANALOG_PINS 14 // We have to fake this because of the poor analog pin mapping planning in FubarinoMini
#define TOTAL_PINS NUM_DIGITAL_PINS // 33
#define MAX_SERVOS NUM_DIGITAL_PINS
#define VERSION_BLINK_PIN PIN_LED1
#define IS_PIN_DIGITAL(p) ((p) != 14 && (p) != 15 && (p) != 31 && (p) != 32)
#define IS_PIN_ANALOG(p) ((p) == 0 || ((p) >= 3 && (p) <= 13))
#define IS_PIN_PWM(p) IS_PIN_DIGITAL(p)
#define IS_PIN_SERVO(p) IS_PIN_DIGITAL(p)
#define IS_PIN_I2C(p) ((p) == 25 || (p) == 26)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) (p)
#define PIN_TO_PWM(p) (p)
#define PIN_TO_SERVO(p) (p)
// Pic32 chipKIT UNO32
#elif defined(_BOARD_UNO_) && defined(__PIC32) // NOTE: no _BOARD_UNO32_ to use
#define TOTAL_ANALOG_PINS NUM_ANALOG_PINS // 12
#define TOTAL_PINS NUM_DIGITAL_PINS // 47 All pins can be digital
#define MAX_SERVOS NUM_DIGITAL_PINS // All pins can be servo with SoftPWMservo
#define VERSION_BLINK_PIN PIN_LED1
#define IS_PIN_DIGITAL(p) ((p) >= 2)
#define IS_PIN_ANALOG(p) ((p) >= 14 && (p) <= 25)
#define IS_PIN_PWM(p) IS_PIN_DIGITAL(p)
#define IS_PIN_SERVO(p) IS_PIN_DIGITAL(p)
#define IS_PIN_I2C(p) ((p) == 45 || (p) == 46)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 14)
#define PIN_TO_PWM(p) (p)
#define PIN_TO_SERVO(p) (p)
// Pic32 chipKIT DP32
#elif defined(_BOARD_DP32_)
#define TOTAL_ANALOG_PINS 15 // Really only has 9, but have to override because of mistake in variant file
#define TOTAL_PINS NUM_DIGITAL_PINS // 19
#define MAX_SERVOS NUM_DIGITAL_PINS // All pins can be servo with SoftPWMservo
#define VERSION_BLINK_PIN PIN_LED1
#define IS_PIN_DIGITAL(p) (((p) != 1) && ((p) != 4) && ((p) != 5) && ((p) != 15) && ((p) != 16))
#define IS_PIN_ANALOG(p) ((p) >= 6 && (p) <= 14)
#define IS_PIN_PWM(p) IS_PIN_DIGITAL(p)
#define IS_PIN_SERVO(p) IS_PIN_DIGITAL(p)
#define IS_PIN_I2C(p) ((p) == 2 || (p) == 3)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) (p)
#define PIN_TO_PWM(p) (p)
#define PIN_TO_SERVO(p) (p)
// Pic32 chipKIT uC32
#elif defined(_BOARD_UC32_)
#define TOTAL_ANALOG_PINS NUM_ANALOG_PINS // 12
#define TOTAL_PINS NUM_DIGITAL_PINS // 47 All pins can be digital
#define MAX_SERVOS NUM_DIGITAL_PINS // All pins can be servo with SoftPWMservo
#define VERSION_BLINK_PIN PIN_LED1
#define IS_PIN_DIGITAL(p) ((p) >= 2)
#define IS_PIN_ANALOG(p) ((p) >= 14 && (p) <= 25)
#define IS_PIN_PWM(p) IS_PIN_DIGITAL(p)
#define IS_PIN_SERVO(p) IS_PIN_DIGITAL(p)
#define IS_PIN_I2C(p) ((p) == 45 || (p) == 46)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 14)
#define PIN_TO_PWM(p) (p)
#define PIN_TO_SERVO(p) (p)
// Pic32 chipKIT WF32
#elif defined(_BOARD_WF32_)
#define TOTAL_ANALOG_PINS NUM_ANALOG_PINS
#define TOTAL_PINS NUM_DIGITAL_PINS
#define MAX_SERVOS NUM_DIGITAL_PINS
#define VERSION_BLINK_PIN PIN_LED1
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) <= 49) // Accounts for SD and WiFi dedicated pins
#define IS_PIN_ANALOG(p) ((p) >= 14 && (p) <= 25)
#define IS_PIN_PWM(p) IS_PIN_DIGITAL(p)
#define IS_PIN_SERVO(p) IS_PIN_DIGITAL(p)
#define IS_PIN_I2C(p) ((p) == 34 || (p) == 35)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 14)
#define PIN_TO_PWM(p) (p)
#define PIN_TO_SERVO(p) (p)
// Pic32 chipKIT WiFire
#elif defined(_BOARD_WIFIRE_)
#define TOTAL_ANALOG_PINS NUM_ANALOG_PINS // 14
#define TOTAL_PINS NUM_DIGITAL_PINS // 71
#define MAX_SERVOS NUM_DIGITAL_PINS
#define VERSION_BLINK_PIN PIN_LED1
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) <= 47) // Accounts for SD and WiFi dedicated pins
#define IS_PIN_ANALOG(p) ((p) >= 14 && (p) <= 25)
#define IS_PIN_PWM(p) IS_PIN_DIGITAL(p)
#define IS_PIN_SERVO(p) IS_PIN_DIGITAL(p)
#define IS_PIN_I2C(p) ((p) == 34 || (p) == 35)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) <= 25 ? ((p) - 14) : (p) - 36)
#define PIN_TO_PWM(p) (p)
#define PIN_TO_SERVO(p) (p)
// Pic32 chipKIT MAX32
#elif defined(_BOARD_MEGA_) && defined(__PIC32) // NOTE: no _BOARD_MAX32_ to use
#define TOTAL_ANALOG_PINS NUM_ANALOG_PINS // 16
#define TOTAL_PINS NUM_DIGITAL_PINS // 87
#define MAX_SERVOS NUM_DIGITAL_PINS
#define VERSION_BLINK_PIN PIN_LED1
#define IS_PIN_DIGITAL(p) ((p) >= 2)
#define IS_PIN_ANALOG(p) ((p) >= 54 && (p) <= 69)
#define IS_PIN_PWM(p) IS_PIN_DIGITAL(p)
#define IS_PIN_SERVO(p) IS_PIN_DIGITAL(p)
#define IS_PIN_I2C(p) ((p) == 34 || (p) == 35)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 54)
#define PIN_TO_PWM(p) (p)
#define PIN_TO_SERVO(p) (p)
// Pic32 chipKIT Pi
#elif defined(_BOARD_CHIPKIT_PI_)
#define TOTAL_ANALOG_PINS 16
#define TOTAL_PINS NUM_DIGITAL_PINS // 19
#define MAX_SERVOS NUM_DIGITAL_PINS
#define VERSION_BLINK_PIN PIN_LED1
#define IS_PIN_DIGITAL(p) (((p) >= 2) && ((p) <= 3) || (((p) >= 8) && ((p) <= 13)) || (((p) >= 14) && ((p) <= 17)))
#define IS_PIN_ANALOG(p) ((p) >= 14 && (p) <= 17)
#define IS_PIN_PWM(p) IS_PIN_DIGITAL(p)
#define IS_PIN_SERVO(p) IS_PIN_DIGITAL(p)
#define IS_PIN_I2C(p) ((p) == 16 || (p) == 17)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) <= 15 ? (p) - 14 : (p) - 12)
//#define PIN_TO_ANALOG(p) (((p) <= 16) ? ((p) - 14) : ((p) - 16))
#define PIN_TO_PWM(p) (p)
#define PIN_TO_SERVO(p) (p)
// Pinoccio Scout
// Note: digital pins 9-16 are usable but not labeled on the board numerically.
// SS=9, MOSI=10, MISO=11, SCK=12, RX1=13, TX1=14, SCL=15, SDA=16
#elif defined(ARDUINO_PINOCCIO)
#define TOTAL_ANALOG_PINS 8
#define TOTAL_PINS NUM_DIGITAL_PINS // 32
#define VERSION_BLINK_PIN 23
#define PIN_SERIAL1_RX 13
#define PIN_SERIAL1_TX 14
#define IS_PIN_DIGITAL(p) (((p) >= 2) && ((p) <= 16)) || (((p) >= 24) && ((p) <= 31))
#define IS_PIN_ANALOG(p) ((p) >= 24 && (p) <= 31)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) IS_PIN_DIGITAL(p)
#define IS_PIN_I2C(p) ((p) == SCL || (p) == SDA)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_SERIAL(p) ((p) == 13 || (p) == 14)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 24)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
// ESP8266
// note: boot mode GPIOs 0, 2 and 15 can be used as outputs, GPIOs 6-11 are in use for flash IO
#elif defined(ESP8266)
#define TOTAL_ANALOG_PINS NUM_ANALOG_INPUTS
#define TOTAL_PINS A0 + NUM_ANALOG_INPUTS
#define PIN_SERIAL_RX 3
#define PIN_SERIAL_TX 1
#define IS_PIN_DIGITAL(p) (((p) >= 0 && (p) <= 5) || ((p) >= 12 && (p) < A0))
#define IS_PIN_ANALOG(p) ((p) >= A0 && (p) < A0 + NUM_ANALOG_INPUTS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == SDA || (p) == SCL)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define IS_PIN_INTERRUPT(p) (digitalPinToInterrupt(p) > NOT_AN_INTERRUPT)
#define IS_PIN_SERIAL(p) ((p) == PIN_SERIAL_RX || (p) == PIN_SERIAL_TX)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - A0)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
#define DEFAULT_PWM_RESOLUTION 10
// STM32 based boards
#elif defined(ARDUINO_ARCH_STM32)
#define TOTAL_ANALOG_PINS NUM_ANALOG_INPUTS
#define TOTAL_PINS NUM_DIGITAL_PINS
#define TOTAL_PORTS MAX_NB_PORT
#define VERSION_BLINK_PIN LED_BUILTIN
// PIN_SERIALY_RX/TX defined in the variant.h
#define IS_PIN_DIGITAL(p) (digitalPinIsValid(p) && !pinIsSerial(p))
#define IS_PIN_ANALOG(p) ((p >= A0) && (p < (A0 + TOTAL_ANALOG_PINS)) && !pinIsSerial(p))
#define IS_PIN_PWM(p) (IS_PIN_DIGITAL(p) && digitalPinHasPWM(p))
#define IS_PIN_SERVO(p) IS_PIN_DIGITAL(p)
#define IS_PIN_I2C(p) (IS_PIN_DIGITAL(p) && digitalPinHasI2C(p))
#define IS_PIN_SPI(p) (IS_PIN_DIGITAL(p) && digitalPinHasSPI(p))
#define IS_PIN_INTERRUPT(p) (IS_PIN_DIGITAL(p) && (digitalPinToInterrupt(p) > NOT_AN_INTERRUPT)))
#define IS_PIN_SERIAL(p) (digitalPinHasSerial(p) && !pinIsSerial(p))
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) (p-A0)
#define PIN_TO_PWM(p) (p)
#define PIN_TO_SERVO(p) (p)
#define DEFAULT_PWM_RESOLUTION PWM_RESOLUTION
// Adafruit Bluefruit nRF52 boards
#elif defined(ARDUINO_NRF52_ADAFRUIT)
#define TOTAL_ANALOG_PINS NUM_ANALOG_INPUTS
#define TOTAL_PINS 32
#define VERSION_BLINK_PIN LED_BUILTIN
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) == PIN_A0 || (p) == PIN_A1 || (p) == PIN_A2 || (p) == PIN_A3 || \
(p) == PIN_A4 || (p) == PIN_A5 || (p) == PIN_A6 || (p) == PIN_A7)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) IS_PIN_DIGITAL(p)
#define IS_PIN_I2C(p) ((p) == PIN_WIRE_SDA || (p) == PIN_WIRE_SCL)
#define IS_PIN_SPI(p) ((p) == SS || (p)== MOSI || (p) == MISO || (p == SCK))
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ( ((p) == PIN_A0) ? 0 : ((p) == PIN_A1) ? 1 : ((p) == PIN_A2) ? 2 : ((p) == PIN_A3) ? 3 : \
((p) == PIN_A4) ? 4 : ((p) == PIN_A5) ? 5 : ((p) == PIN_A6) ? 6 : ((p) == PIN_A7) ? 7 : (127))
#define PIN_TO_PWM(p) (p)
#define PIN_TO_SERVO(p) (p)
// anything else
#else
#error "Please edit Boards.h with a hardware abstraction for this board"
#endif
// as long this is not defined for all boards:
#ifndef IS_PIN_SPI
#define IS_PIN_SPI(p) 0
#endif
#ifndef IS_PIN_SERIAL
#define IS_PIN_SERIAL(p) 0
#endif
#ifndef DEFAULT_PWM_RESOLUTION
#define DEFAULT_PWM_RESOLUTION 8
#endif
/*==============================================================================
* readPort() - Read an 8 bit port
*============================================================================*/
static inline unsigned char readPort(byte, byte) __attribute__((always_inline, unused));
static inline unsigned char readPort(byte port, byte bitmask)
{
#if defined(ARDUINO_PINOUT_OPTIMIZE)
if (port == 0) return (PIND & 0xFC) & bitmask; // ignore Rx/Tx 0/1
if (port == 1) return ((PINB & 0x3F) | ((PINC & 0x03) << 6)) & bitmask;
if (port == 2) return ((PINC & 0x3C) >> 2) & bitmask;
return 0;
#else
unsigned char out = 0, pin = port * 8;
if (IS_PIN_DIGITAL(pin + 0) && (bitmask & 0x01) && digitalRead(PIN_TO_DIGITAL(pin + 0))) out |= 0x01;
if (IS_PIN_DIGITAL(pin + 1) && (bitmask & 0x02) && digitalRead(PIN_TO_DIGITAL(pin + 1))) out |= 0x02;
if (IS_PIN_DIGITAL(pin + 2) && (bitmask & 0x04) && digitalRead(PIN_TO_DIGITAL(pin + 2))) out |= 0x04;
if (IS_PIN_DIGITAL(pin + 3) && (bitmask & 0x08) && digitalRead(PIN_TO_DIGITAL(pin + 3))) out |= 0x08;
if (IS_PIN_DIGITAL(pin + 4) && (bitmask & 0x10) && digitalRead(PIN_TO_DIGITAL(pin + 4))) out |= 0x10;
if (IS_PIN_DIGITAL(pin + 5) && (bitmask & 0x20) && digitalRead(PIN_TO_DIGITAL(pin + 5))) out |= 0x20;
if (IS_PIN_DIGITAL(pin + 6) && (bitmask & 0x40) && digitalRead(PIN_TO_DIGITAL(pin + 6))) out |= 0x40;
if (IS_PIN_DIGITAL(pin + 7) && (bitmask & 0x80) && digitalRead(PIN_TO_DIGITAL(pin + 7))) out |= 0x80;
return out;
#endif
}
/*==============================================================================
* writePort() - Write an 8 bit port, only touch pins specified by a bitmask
*============================================================================*/
static inline unsigned char writePort(byte, byte, byte) __attribute__((always_inline, unused));
static inline unsigned char writePort(byte port, byte value, byte bitmask)
{
#if defined(ARDUINO_PINOUT_OPTIMIZE)
if (port == 0) {
bitmask = bitmask & 0xFC; // do not touch Tx & Rx pins
byte valD = value & bitmask;
byte maskD = ~bitmask;
cli();
PORTD = (PORTD & maskD) | valD;
sei();
} else if (port == 1) {
byte valB = (value & bitmask) & 0x3F;
byte valC = (value & bitmask) >> 6;
byte maskB = ~(bitmask & 0x3F);
byte maskC = ~((bitmask & 0xC0) >> 6);
cli();
PORTB = (PORTB & maskB) | valB;
PORTC = (PORTC & maskC) | valC;
sei();
} else if (port == 2) {
bitmask = bitmask & 0x0F;
byte valC = (value & bitmask) << 2;
byte maskC = ~(bitmask << 2);
cli();
PORTC = (PORTC & maskC) | valC;
sei();
}
return 1;
#else
byte pin = port * 8;
if ((bitmask & 0x01)) digitalWrite(PIN_TO_DIGITAL(pin + 0), (value & 0x01));
if ((bitmask & 0x02)) digitalWrite(PIN_TO_DIGITAL(pin + 1), (value & 0x02));
if ((bitmask & 0x04)) digitalWrite(PIN_TO_DIGITAL(pin + 2), (value & 0x04));
if ((bitmask & 0x08)) digitalWrite(PIN_TO_DIGITAL(pin + 3), (value & 0x08));
if ((bitmask & 0x10)) digitalWrite(PIN_TO_DIGITAL(pin + 4), (value & 0x10));
if ((bitmask & 0x20)) digitalWrite(PIN_TO_DIGITAL(pin + 5), (value & 0x20));
if ((bitmask & 0x40)) digitalWrite(PIN_TO_DIGITAL(pin + 6), (value & 0x40));
if ((bitmask & 0x80)) digitalWrite(PIN_TO_DIGITAL(pin + 7), (value & 0x80));
return 1;
#endif
}
#ifndef TOTAL_PORTS
#define TOTAL_PORTS ((TOTAL_PINS + 7) / 8)
#endif
#endif /* Firmata_Boards_h */

View File

@ -0,0 +1,554 @@
/*
Firmata.cpp - Firmata library v2.5.8 - 2018-04-15
Copyright (c) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2009-2017 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
//******************************************************************************
//* Includes
//******************************************************************************
#include "Firmata.h"
#include "HardwareSerial.h"
#include <string.h>
#include <stdlib.h>
using namespace firmata;
//******************************************************************************
//* Static Members
//******************************************************************************
// make one instance for the user to use
FirmataClass Firmata;
/* callback functions */
callbackFunction FirmataClass::currentAnalogCallback = (callbackFunction)NULL;
callbackFunction FirmataClass::currentDigitalCallback = (callbackFunction)NULL;
callbackFunction FirmataClass::currentPinModeCallback = (callbackFunction)NULL;
callbackFunction FirmataClass::currentPinValueCallback = (callbackFunction)NULL;
callbackFunction FirmataClass::currentReportAnalogCallback = (callbackFunction)NULL;
callbackFunction FirmataClass::currentReportDigitalCallback = (callbackFunction)NULL;
stringCallbackFunction FirmataClass::currentStringCallback = (stringCallbackFunction)NULL;
sysexCallbackFunction FirmataClass::currentSysexCallback = (sysexCallbackFunction)NULL;
systemCallbackFunction FirmataClass::currentSystemResetCallback = (systemCallbackFunction)NULL;
//******************************************************************************
//* Support Functions
//******************************************************************************
/**
* Split a 16-bit byte into two 7-bit values and write each value.
* @param value The 16-bit value to be split and written separately.
*/
void FirmataClass::sendValueAsTwo7bitBytes(int value)
{
marshaller.encodeByteStream(sizeof(value), reinterpret_cast<uint8_t *>(&value), sizeof(value));
}
/**
* A helper method to write the beginning of a Sysex message transmission.
*/
void FirmataClass::startSysex(void)
{
FirmataStream->write(START_SYSEX);
}
/**
* A helper method to write the end of a Sysex message transmission.
*/
void FirmataClass::endSysex(void)
{
FirmataStream->write(END_SYSEX);
}
//******************************************************************************
//* Constructors
//******************************************************************************
/**
* The Firmata class.
* An instance named "Firmata" is created automatically for the user.
*/
FirmataClass::FirmataClass()
:
parser(FirmataParser(parserBuffer, MAX_DATA_BYTES))
{
firmwareVersionCount = 0;
firmwareVersionVector = 0;
blinkVersionDisabled = false;
// Establish callback translation to parser callbacks
parser.attach(ANALOG_MESSAGE, (FirmataParser::callbackFunction)staticAnalogCallback, (void *)NULL);
parser.attach(DIGITAL_MESSAGE, (FirmataParser::callbackFunction)staticDigitalCallback, (void *)NULL);
parser.attach(REPORT_ANALOG, (FirmataParser::callbackFunction)staticReportAnalogCallback, (void *)NULL);
parser.attach(REPORT_DIGITAL, (FirmataParser::callbackFunction)staticReportDigitalCallback, (void *)NULL);
parser.attach(SET_PIN_MODE, (FirmataParser::callbackFunction)staticPinModeCallback, (void *)NULL);
parser.attach(SET_DIGITAL_PIN_VALUE, (FirmataParser::callbackFunction)staticPinValueCallback, (void *)NULL);
parser.attach(STRING_DATA, (FirmataParser::stringCallbackFunction)staticStringCallback, (void *)NULL);
parser.attach(START_SYSEX, (FirmataParser::sysexCallbackFunction)staticSysexCallback, (void *)NULL);
parser.attach(REPORT_FIRMWARE, (FirmataParser::versionCallbackFunction)staticReportFirmwareCallback, this);
parser.attach(REPORT_VERSION, (FirmataParser::systemCallbackFunction)staticReportVersionCallback, this);
parser.attach(SYSTEM_RESET, (FirmataParser::systemCallbackFunction)staticSystemResetCallback, (void *)NULL);
}
//******************************************************************************
//* Public Methods
//******************************************************************************
/**
* Initialize the default Serial transport at the default baud of 57600.
*/
void FirmataClass::begin(void)
{
begin(57600);
}
/**
* Initialize the default Serial transport and override the default baud.
* Sends the protocol version to the host application followed by the firmware version and name.
* blinkVersion is also called. To skip the call to blinkVersion, call Firmata.disableBlinkVersion()
* before calling Firmata.begin(baud).
* @param speed The baud to use. 57600 baud is the default value.
*/
void FirmataClass::begin(long speed)
{
Serial.begin(speed);
blinkVersion();
begin(Serial);
}
/**
* Reassign the Firmata stream transport.
* @param s A reference to the Stream transport object. This can be any type of
* transport that implements the Stream interface. Some examples include Ethernet, WiFi
* and other UARTs on the board (Serial1, Serial2, etc).
*/
void FirmataClass::begin(Stream &s)
{
FirmataStream = &s;
marshaller.begin(s);
// do not call blinkVersion() here because some hardware such as the
// Ethernet shield use pin 13
printVersion(); // send the protocol version
printFirmwareVersion(); // send the firmware name and version
}
/**
* Send the Firmata protocol version to the Firmata host application.
*/
void FirmataClass::printVersion(void)
{
marshaller.sendVersion(FIRMATA_PROTOCOL_MAJOR_VERSION, FIRMATA_PROTOCOL_MINOR_VERSION);
}
/**
* Blink the Firmata protocol version to the onboard LEDs (if the board has an onboard LED).
* If VERSION_BLINK_PIN is not defined in Boards.h for a particular board, then this method
* does nothing.
* The first series of flashes indicates the firmware major version (2 flashes = 2).
* The second series of flashes indicates the firmware minor version (5 flashes = 5).
*/
void FirmataClass::blinkVersion(void)
{
#if defined(VERSION_BLINK_PIN)
if (blinkVersionDisabled) return;
// flash the pin with the protocol version
pinMode(VERSION_BLINK_PIN, OUTPUT);
strobeBlinkPin(VERSION_BLINK_PIN, FIRMATA_FIRMWARE_MAJOR_VERSION, 40, 210);
delay(250);
strobeBlinkPin(VERSION_BLINK_PIN, FIRMATA_FIRMWARE_MINOR_VERSION, 40, 210);
delay(125);
#endif
}
/**
* Provides a means to disable the version blink sequence on the onboard LED, trimming startup
* time by a couple of seconds.
* Call this before Firmata.begin(). It only applies when using the default Serial transport.
*/
void FirmataClass::disableBlinkVersion()
{
blinkVersionDisabled = true;
}
/**
* Sends the firmware name and version to the Firmata host application. The major and minor version
* numbers are the first 2 bytes in the message. The following bytes are the characters of the
* firmware name.
*/
void FirmataClass::printFirmwareVersion(void)
{
if (firmwareVersionCount) { // make sure that the name has been set before reporting
marshaller.sendFirmwareVersion(static_cast<uint8_t>(firmwareVersionVector[0]), static_cast<uint8_t>(firmwareVersionVector[1]), (firmwareVersionCount - 2), reinterpret_cast<uint8_t *>(&firmwareVersionVector[2]));
}
}
/**
* Sets the name and version of the firmware. This is not the same version as the Firmata protocol
* (although at times the firmware version and protocol version may be the same number).
* @param name A pointer to the name char array
* @param major The major version number
* @param minor The minor version number
*/
void FirmataClass::setFirmwareNameAndVersion(const char *name, byte major, byte minor)
{
const char *firmwareName;
const char *extension;
// parse out ".cpp" and "applet/" that comes from using __FILE__
extension = strstr(name, ".cpp");
firmwareName = strrchr(name, '/');
if (!firmwareName) {
// windows
firmwareName = strrchr(name, '\\');
}
if (!firmwareName) {
// user passed firmware name
firmwareName = name;
} else {
firmwareName ++;
}
if (!extension) {
firmwareVersionCount = strlen(firmwareName) + 2;
} else {
firmwareVersionCount = extension - firmwareName + 2;
}
// in case anyone calls setFirmwareNameAndVersion more than once
free(firmwareVersionVector);
firmwareVersionVector = (byte *) malloc(firmwareVersionCount + 1);
firmwareVersionVector[firmwareVersionCount] = 0;
firmwareVersionVector[0] = major;
firmwareVersionVector[1] = minor;
strncpy((char *)firmwareVersionVector + 2, firmwareName, firmwareVersionCount - 2);
}
//------------------------------------------------------------------------------
// Serial Receive Handling
/**
* A wrapper for Stream::available()
* @return The number of bytes remaining in the input stream buffer.
*/
int FirmataClass::available(void)
{
return FirmataStream->available();
}
/**
* Read a single int from the input stream. If the value is not = -1, pass it on to parse(byte)
*/
void FirmataClass::processInput(void)
{
int inputData = FirmataStream->read(); // this is 'int' to handle -1 when no data
if (inputData != -1) {
parser.parse(inputData);
}
}
/**
* Parse data from the input stream.
* @param inputData A single byte to be added to the parser.
*/
void FirmataClass::parse(byte inputData)
{
parser.parse(inputData);
}
/**
* @return Returns true if the parser is actively parsing data.
*/
boolean FirmataClass::isParsingMessage(void)
{
return parser.isParsingMessage();
}
//------------------------------------------------------------------------------
// Output Stream Handling
/**
* Send an analog message to the Firmata host application. The range of pins is limited to [0..15]
* when using the ANALOG_MESSAGE. The maximum value of the ANALOG_MESSAGE is limited to 14 bits
* (16384). To increase the pin range or value, see the documentation for the EXTENDED_ANALOG
* message.
* @param pin The analog pin to send the value of (limited to pins 0 - 15).
* @param value The value of the analog pin (0 - 1024 for 10-bit analog, 0 - 4096 for 12-bit, etc).
* The maximum value is 14-bits (16384).
*/
void FirmataClass::sendAnalog(byte pin, int value)
{
marshaller.sendAnalog(pin, value);
}
/* (intentionally left out asterix here)
* STUB - NOT IMPLEMENTED
* Send a single digital pin value to the Firmata host application.
* @param pin The digital pin to send the value of.
* @param value The value of the pin.
*/
void FirmataClass::sendDigital(byte pin, int value)
{
(void)pin;
(void)value;
/* TODO add single pin digital messages to the protocol, this needs to
* track the last digital data sent so that it can be sure to change just
* one bit in the packet. This is complicated by the fact that the
* numbering of the pins will probably differ on Arduino, Wiring, and
* other boards.
*/
// TODO: the digital message should not be sent on the serial port every
// time sendDigital() is called. Instead, it should add it to an int
// which will be sent on a schedule. If a pin changes more than once
// before the digital message is sent on the serial port, it should send a
// digital message for each change.
// if(value == 0)
// sendDigitalPortPair();
}
/**
* Send an 8-bit port in a single digital message (protocol v2 and later).
* Send 14-bits in a single digital message (protocol v1).
* @param portNumber The port number to send. Note that this is not the same as a "port" on the
* physical microcontroller. Ports are defined in order per every 8 pins in ascending order
* of the Arduino digital pin numbering scheme. Port 0 = pins D0 - D7, port 1 = pins D8 - D15, etc.
* @param portData The value of the port. The value of each pin in the port is represented by a bit.
*/
void FirmataClass::sendDigitalPort(byte portNumber, int portData)
{
marshaller.sendDigitalPort(portNumber, portData);
}
/**
* Send a sysex message where all values after the command byte are packet as 2 7-bit bytes
* (this is not always the case so this function is not always used to send sysex messages).
* @param command The sysex command byte.
* @param bytec The number of data bytes in the message (excludes start, command and end bytes).
* @param bytev A pointer to the array of data bytes to send in the message.
*/
void FirmataClass::sendSysex(byte command, byte bytec, byte *bytev)
{
marshaller.sendSysex(command, bytec, bytev);
}
/**
* Send a string to the Firmata host application.
* @param command Must be STRING_DATA
* @param string A pointer to the char string
*/
void FirmataClass::sendString(byte command, const char *string)
{
if (command == STRING_DATA) {
marshaller.sendString(string);
}
}
/**
* Send a string to the Firmata host application.
* @param string A pointer to the char string
*/
void FirmataClass::sendString(const char *string)
{
marshaller.sendString(string);
}
/**
* A wrapper for Stream::available().
* Write a single byte to the output stream.
* @param c The byte to be written.
*/
void FirmataClass::write(byte c)
{
FirmataStream->write(c);
}
/**
* Attach a generic sysex callback function to a command (options are: ANALOG_MESSAGE,
* DIGITAL_MESSAGE, REPORT_ANALOG, REPORT DIGITAL, SET_PIN_MODE and SET_DIGITAL_PIN_VALUE).
* @param command The ID of the command to attach a callback function to.
* @param newFunction A reference to the callback function to attach.
*/
void FirmataClass::attach(uint8_t command, ::callbackFunction newFunction)
{
switch (command) {
case ANALOG_MESSAGE:
currentAnalogCallback = newFunction;
break;
case DIGITAL_MESSAGE:
currentDigitalCallback = newFunction;
break;
case REPORT_ANALOG:
currentReportAnalogCallback = newFunction;
break;
case REPORT_DIGITAL:
currentReportDigitalCallback = newFunction;
break;
case SET_PIN_MODE:
currentPinModeCallback = newFunction;
break;
case SET_DIGITAL_PIN_VALUE:
currentPinValueCallback = newFunction;
break;
}
}
/**
* Attach a callback function for the SYSTEM_RESET command.
* @param command Must be set to SYSTEM_RESET or it will be ignored.
* @param newFunction A reference to the system reset callback function to attach.
*/
void FirmataClass::attach(uint8_t command, systemCallbackFunction newFunction)
{
switch (command) {
case SYSTEM_RESET:
currentSystemResetCallback = newFunction;
break;
}
}
/**
* Attach a callback function for the STRING_DATA command.
* @param command Must be set to STRING_DATA or it will be ignored.
* @param newFunction A reference to the string callback function to attach.
*/
void FirmataClass::attach(uint8_t command, stringCallbackFunction newFunction)
{
switch (command) {
case STRING_DATA:
currentStringCallback = newFunction;
break;
}
}
/**
* Attach a generic sysex callback function to sysex command.
* @param command The ID of the command to attach a callback function to.
* @param newFunction A reference to the sysex callback function to attach.
*/
void FirmataClass::attach(uint8_t command, sysexCallbackFunction newFunction)
{
(void)command;
currentSysexCallback = newFunction;
}
/**
* Detach a callback function for a specified command (such as SYSTEM_RESET, STRING_DATA,
* ANALOG_MESSAGE, DIGITAL_MESSAGE, etc).
* @param command The ID of the command to detatch the callback function from.
*/
void FirmataClass::detach(uint8_t command)
{
switch (command) {
case SYSTEM_RESET:
attach(command, (systemCallbackFunction)NULL);
break;
case STRING_DATA:
attach(command, (stringCallbackFunction)NULL);
break;
case START_SYSEX:
attach(command, (sysexCallbackFunction)NULL);
break;
default:
attach(command, (callbackFunction)NULL);
break;
}
}
/**
* @param pin The pin to get the configuration of.
* @return The configuration of the specified pin.
*/
byte FirmataClass::getPinMode(byte pin)
{
return pinConfig[pin];
}
/**
* Set the pin mode/configuration. The pin configuration (or mode) in Firmata represents the
* current function of the pin. Examples are digital input or output, analog input, pwm, i2c,
* serial (uart), etc.
* @param pin The pin to configure.
* @param config The configuration value for the specified pin.
*/
void FirmataClass::setPinMode(byte pin, byte config)
{
if (pinConfig[pin] == PIN_MODE_IGNORE)
return;
pinConfig[pin] = config;
}
/**
* @param pin The pin to get the state of.
* @return The state of the specified pin.
*/
int FirmataClass::getPinState(byte pin)
{
return pinState[pin];
}
/**
* Set the pin state. The pin state of an output pin is the pin value. The state of an
* input pin is 0, unless the pin has it's internal pull up resistor enabled, then the value is 1.
* @param pin The pin to set the state of
* @param state Set the state of the specified pin
*/
void FirmataClass::setPinState(byte pin, int state)
{
pinState[pin] = state;
}
// sysex callbacks
/*
* this is too complicated for analogReceive, but maybe for Sysex?
void FirmataClass::attachSysex(sysexFunction newFunction)
{
byte i;
byte tmpCount = analogReceiveFunctionCount;
analogReceiveFunction* tmpArray = analogReceiveFunctionArray;
analogReceiveFunctionCount++;
analogReceiveFunctionArray = (analogReceiveFunction*) calloc(analogReceiveFunctionCount, sizeof(analogReceiveFunction));
for(i = 0; i < tmpCount; i++) {
analogReceiveFunctionArray[i] = tmpArray[i];
}
analogReceiveFunctionArray[tmpCount] = newFunction;
free(tmpArray);
}
*/
//******************************************************************************
//* Private Methods
//******************************************************************************
/**
* Flashing the pin for the version number
* @private
* @param pin The pin the LED is attached to.
* @param count The number of times to flash the LED.
* @param onInterval The number of milliseconds for the LED to be ON during each interval.
* @param offInterval The number of milliseconds for the LED to be OFF during each interval.
*/
void FirmataClass::strobeBlinkPin(byte pin, int count, int onInterval, int offInterval)
{
byte i;
for (i = 0; i < count; i++) {
delay(offInterval);
digitalWrite(pin, HIGH);
delay(onInterval);
digitalWrite(pin, LOW);
}
}

180
libraries/Firmata/Firmata.h Normal file
View File

@ -0,0 +1,180 @@
/*
Firmata.h - Firmata library v2.5.8 - 2018-04-15
Copyright (c) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2009-2017 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
#ifndef Firmata_h
#define Firmata_h
#include "Boards.h" /* Hardware Abstraction Layer + Wiring/Arduino */
#include "FirmataDefines.h"
#include "FirmataMarshaller.h"
#include "FirmataParser.h"
/* DEPRECATED as of Firmata v2.5.1. As of 2.5.1 there are separate version numbers for
* the protocol version and the firmware version.
*/
#define FIRMATA_MAJOR_VERSION 2 // same as FIRMATA_PROTOCOL_MAJOR_VERSION
#define FIRMATA_MINOR_VERSION 5 // same as FIRMATA_PROTOCOL_MINOR_VERSION
#define FIRMATA_BUGFIX_VERSION 1 // same as FIRMATA_PROTOCOL_BUGFIX_VERSION
// extended command set using sysex (0-127/0x00-0x7F)
/* 0x00-0x0F reserved for user-defined commands */
// these are DEPRECATED to make the naming more consistent
#define FIRMATA_STRING 0x71 // same as STRING_DATA
#define SYSEX_I2C_REQUEST 0x76 // same as I2C_REQUEST
#define SYSEX_I2C_REPLY 0x77 // same as I2C_REPLY
#define SYSEX_SAMPLING_INTERVAL 0x7A // same as SAMPLING_INTERVAL
// pin modes
//#define INPUT 0x00 // defined in Arduino.h
//#define OUTPUT 0x01 // defined in Arduino.h
// DEPRECATED as of Firmata v2.5
#define ANALOG 0x02 // same as PIN_MODE_ANALOG
#define PWM 0x03 // same as PIN_MODE_PWM
#define SERVO 0x04 // same as PIN_MODE_SERVO
#define SHIFT 0x05 // same as PIN_MODE_SHIFT
#define I2C 0x06 // same as PIN_MODE_I2C
#define ONEWIRE 0x07 // same as PIN_MODE_ONEWIRE
#define STEPPER 0x08 // same as PIN_MODE_STEPPER
#define ENCODER 0x09 // same as PIN_MODE_ENCODER
#define IGNORE 0x7F // same as PIN_MODE_IGNORE
namespace firmata {
// TODO make it a subclass of a generic Serial/Stream base class
class FirmataClass
{
public:
typedef void (*callbackFunction)(uint8_t, int);
typedef void (*systemCallbackFunction)(void);
typedef void (*stringCallbackFunction)(char *);
typedef void (*sysexCallbackFunction)(uint8_t command, uint8_t argc, uint8_t *argv);
FirmataClass();
/* Arduino constructors */
void begin();
void begin(long);
void begin(Stream &s);
/* querying functions */
void printVersion(void);
void blinkVersion(void);
void printFirmwareVersion(void);
//void setFirmwareVersion(byte major, byte minor); // see macro below
void setFirmwareNameAndVersion(const char *name, byte major, byte minor);
void disableBlinkVersion();
/* serial receive handling */
int available(void);
void processInput(void);
void parse(unsigned char value);
boolean isParsingMessage(void);
/* serial send handling */
void sendAnalog(byte pin, int value);
void sendDigital(byte pin, int value); // TODO implement this
void sendDigitalPort(byte portNumber, int portData);
void sendString(const char *string);
void sendString(byte command, const char *string);
void sendSysex(byte command, byte bytec, byte *bytev);
void write(byte c);
/* attach & detach callback functions to messages */
void attach(uint8_t command, callbackFunction newFunction);
void attach(uint8_t command, systemCallbackFunction newFunction);
void attach(uint8_t command, stringCallbackFunction newFunction);
void attach(uint8_t command, sysexCallbackFunction newFunction);
void detach(uint8_t command);
/* access pin state and config */
byte getPinMode(byte pin);
void setPinMode(byte pin, byte config);
/* access pin state */
int getPinState(byte pin);
void setPinState(byte pin, int state);
/* utility methods */
void sendValueAsTwo7bitBytes(int value);
void startSysex(void);
void endSysex(void);
private:
uint8_t parserBuffer[MAX_DATA_BYTES];
FirmataMarshaller marshaller;
FirmataParser parser;
Stream *FirmataStream;
/* firmware name and version */
byte firmwareVersionCount;
byte *firmwareVersionVector;
/* pin configuration */
byte pinConfig[TOTAL_PINS];
int pinState[TOTAL_PINS];
boolean blinkVersionDisabled;
/* private methods ------------------------------ */
void strobeBlinkPin(byte pin, int count, int onInterval, int offInterval);
friend void FirmataMarshaller::encodeByteStream (size_t bytec, uint8_t * bytev, size_t max_bytes = 0) const;
/* callback functions */
static callbackFunction currentAnalogCallback;
static callbackFunction currentDigitalCallback;
static callbackFunction currentPinModeCallback;
static callbackFunction currentPinValueCallback;
static callbackFunction currentReportAnalogCallback;
static callbackFunction currentReportDigitalCallback;
static stringCallbackFunction currentStringCallback;
static sysexCallbackFunction currentSysexCallback;
static systemCallbackFunction currentSystemResetCallback;
/* static callbacks */
inline static void staticAnalogCallback (void *, uint8_t command, uint16_t value) { if ( currentAnalogCallback ) { currentAnalogCallback(command,(int)value); } }
inline static void staticDigitalCallback (void *, uint8_t command, uint16_t value) { if ( currentDigitalCallback ) { currentDigitalCallback(command, (int)value); } }
inline static void staticPinModeCallback (void *, uint8_t command, uint16_t value) { if ( currentPinModeCallback ) { currentPinModeCallback(command, (int)value); } }
inline static void staticPinValueCallback (void *, uint8_t command, uint16_t value) { if ( currentPinValueCallback ) { currentPinValueCallback(command, (int)value); } }
inline static void staticReportAnalogCallback (void *, uint8_t command, uint16_t value) { if ( currentReportAnalogCallback ) { currentReportAnalogCallback(command, (int)value); } }
inline static void staticReportDigitalCallback (void *, uint8_t command, uint16_t value) { if ( currentReportDigitalCallback ) { currentReportDigitalCallback(command, (int)value); } }
inline static void staticStringCallback (void *, const char * c_str) { if ( currentStringCallback ) { currentStringCallback((char *)c_str); } }
inline static void staticSysexCallback (void *, uint8_t command, size_t argc, uint8_t *argv) { if ( currentSysexCallback ) { currentSysexCallback(command, (uint8_t)argc, argv); } }
inline static void staticReportFirmwareCallback (void * context, size_t, size_t, const char *) { if ( context ) { ((FirmataClass *)context)->printFirmwareVersion(); } }
inline static void staticReportVersionCallback (void * context) { if ( context ) { ((FirmataClass *)context)->printVersion(); } }
inline static void staticSystemResetCallback (void *) { if ( currentSystemResetCallback ) { currentSystemResetCallback(); } }
};
} // namespace firmata
extern "C" {
// callback function types
typedef firmata::FirmataClass::callbackFunction callbackFunction;
typedef firmata::FirmataClass::systemCallbackFunction systemCallbackFunction;
typedef firmata::FirmataClass::stringCallbackFunction stringCallbackFunction;
typedef firmata::FirmataClass::sysexCallbackFunction sysexCallbackFunction;
}
extern firmata::FirmataClass Firmata;
/*==============================================================================
* MACROS
*============================================================================*/
/* shortcut for setFirmwareNameAndVersion() that uses __FILE__ to set the
* firmware name. It needs to be a macro so that __FILE__ is included in the
* firmware source file rather than the library source file.
*/
#define setFirmwareVersion(x, y) setFirmwareNameAndVersion(__FILE__, x, y)
#endif /* Firmata_h */

View File

@ -0,0 +1,97 @@
/*
FirmataConstants.h
Copyright (c) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2009-2017 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
#ifndef FirmataConstants_h
#define FirmataConstants_h
namespace firmata {
/* Version numbers for the Firmata library.
* The firmware version will not always equal the protocol version going forward.
* Query using the REPORT_FIRMWARE message.
*/
static const int FIRMWARE_MAJOR_VERSION = 2;
static const int FIRMWARE_MINOR_VERSION = 5;
static const int FIRMWARE_BUGFIX_VERSION = 7;
/* Version numbers for the protocol. The protocol is still changing, so these
* version numbers are important.
* Query using the REPORT_VERSION message.
*/
static const int PROTOCOL_MAJOR_VERSION = 2; // for non-compatible changes
static const int PROTOCOL_MINOR_VERSION = 5; // for backwards compatible changes
static const int PROTOCOL_BUGFIX_VERSION = 1; // for bugfix releases
static const int MAX_DATA_BYTES = 64; // max number of data bytes in incoming messages
// message command bytes (128-255/0x80-0xFF)
static const int DIGITAL_MESSAGE = 0x90; // send data for a digital port (collection of 8 pins)
static const int ANALOG_MESSAGE = 0xE0; // send data for an analog pin (or PWM)
static const int REPORT_ANALOG = 0xC0; // enable analog input by pin #
static const int REPORT_DIGITAL = 0xD0; // enable digital input by port pair
//
static const int SET_PIN_MODE = 0xF4; // set a pin to INPUT/OUTPUT/PWM/etc
static const int SET_DIGITAL_PIN_VALUE = 0xF5; // set value of an individual digital pin
//
static const int REPORT_VERSION = 0xF9; // report protocol version
static const int SYSTEM_RESET = 0xFF; // reset from MIDI
//
static const int START_SYSEX = 0xF0; // start a MIDI Sysex message
static const int END_SYSEX = 0xF7; // end a MIDI Sysex message
// extended command set using sysex (0-127/0x00-0x7F)
/* 0x00-0x0F reserved for user-defined commands */
static const int SERIAL_DATA = 0x60; // communicate with serial devices, including other boards
static const int ENCODER_DATA = 0x61; // reply with encoders current positions
static const int SERVO_CONFIG = 0x70; // set max angle, minPulse, maxPulse, freq
static const int STRING_DATA = 0x71; // a string message with 14-bits per char
static const int STEPPER_DATA = 0x72; // control a stepper motor
static const int ONEWIRE_DATA = 0x73; // send an OneWire read/write/reset/select/skip/search request
static const int SHIFT_DATA = 0x75; // a bitstream to/from a shift register
static const int I2C_REQUEST = 0x76; // send an I2C read/write request
static const int I2C_REPLY = 0x77; // a reply to an I2C read request
static const int I2C_CONFIG = 0x78; // config I2C settings such as delay times and power pins
static const int REPORT_FIRMWARE = 0x79; // report name and version of the firmware
static const int EXTENDED_ANALOG = 0x6F; // analog write (PWM, Servo, etc) to any pin
static const int PIN_STATE_QUERY = 0x6D; // ask for a pin's current mode and value
static const int PIN_STATE_RESPONSE = 0x6E; // reply with pin's current mode and value
static const int CAPABILITY_QUERY = 0x6B; // ask for supported modes and resolution of all pins
static const int CAPABILITY_RESPONSE = 0x6C; // reply with supported modes and resolution
static const int ANALOG_MAPPING_QUERY = 0x69; // ask for mapping of analog to pin numbers
static const int ANALOG_MAPPING_RESPONSE = 0x6A; // reply with mapping info
static const int SAMPLING_INTERVAL = 0x7A; // set the poll rate of the main loop
static const int SCHEDULER_DATA = 0x7B; // send a createtask/deletetask/addtotask/schedule/querytasks/querytask request to the scheduler
static const int SYSEX_NON_REALTIME = 0x7E; // MIDI Reserved for non-realtime messages
static const int SYSEX_REALTIME = 0x7F; // MIDI Reserved for realtime messages
// pin modes
static const int PIN_MODE_INPUT = 0x00; // same as INPUT defined in Arduino.h
static const int PIN_MODE_OUTPUT = 0x01; // same as OUTPUT defined in Arduino.h
static const int PIN_MODE_ANALOG = 0x02; // analog pin in analogInput mode
static const int PIN_MODE_PWM = 0x03; // digital pin in PWM output mode
static const int PIN_MODE_SERVO = 0x04; // digital pin in Servo output mode
static const int PIN_MODE_SHIFT = 0x05; // shiftIn/shiftOut mode
static const int PIN_MODE_I2C = 0x06; // pin included in I2C setup
static const int PIN_MODE_ONEWIRE = 0x07; // pin configured for 1-wire
static const int PIN_MODE_STEPPER = 0x08; // pin configured for stepper motor
static const int PIN_MODE_ENCODER = 0x09; // pin configured for rotary encoders
static const int PIN_MODE_SERIAL = 0x0A; // pin configured for serial communication
static const int PIN_MODE_PULLUP = 0x0B; // enable internal pull-up resistor for pin
static const int PIN_MODE_IGNORE = 0x7F; // pin configured to be ignored by digitalWrite and capabilityResponse
static const int TOTAL_PIN_MODES = 13;
} // namespace firmata
#endif // FirmataConstants_h

View File

@ -0,0 +1,283 @@
/*
FirmataDefines.h
Copyright (c) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2009-2016 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
#ifndef FirmataDefines_h
#define FirmataDefines_h
#include "FirmataConstants.h"
/* Version numbers for the Firmata library.
* The firmware version will not always equal the protocol version going forward.
* Query using the REPORT_FIRMWARE message.
*/
#define FIRMATA_FIRMWARE_MAJOR_VERSION firmata::FIRMWARE_MAJOR_VERSION
#define FIRMATA_FIRMWARE_MINOR_VERSION firmata::FIRMWARE_MINOR_VERSION
#define FIRMATA_FIRMWARE_BUGFIX_VERSION firmata::FIRMWARE_BUGFIX_VERSION
/* Version numbers for the protocol. The protocol is still changing, so these
* version numbers are important.
* Query using the REPORT_VERSION message.
*/
#define FIRMATA_PROTOCOL_MAJOR_VERSION firmata::PROTOCOL_MAJOR_VERSION // for non-compatible changes
#define FIRMATA_PROTOCOL_MINOR_VERSION firmata::PROTOCOL_MINOR_VERSION // for backwards compatible changes
#define FIRMATA_PROTOCOL_BUGFIX_VERSION firmata::PROTOCOL_BUGFIX_VERSION // for bugfix releases
#ifdef MAX_DATA_BYTES
#undef MAX_DATA_BYTES
#endif
#define MAX_DATA_BYTES firmata::MAX_DATA_BYTES // max number of data bytes in incoming messages
// message command bytes (128-255/0x80-0xFF)
#ifdef DIGITAL_MESSAGE
#undef DIGITAL_MESSAGE
#endif
#define DIGITAL_MESSAGE firmata::DIGITAL_MESSAGE // send data for a digital port (collection of 8 pins)
#ifdef ANALOG_MESSAGE
#undef ANALOG_MESSAGE
#endif
#define ANALOG_MESSAGE firmata::ANALOG_MESSAGE // send data for an analog pin (or PWM)
#ifdef REPORT_ANALOG
#undef REPORT_ANALOG
#endif
#define REPORT_ANALOG firmata::REPORT_ANALOG // enable analog input by pin #
#ifdef REPORT_DIGITAL
#undef REPORT_DIGITAL
#endif
#define REPORT_DIGITAL firmata::REPORT_DIGITAL // enable digital input by port pair
//
#ifdef SET_PIN_MODE
#undef SET_PIN_MODE
#endif
#define SET_PIN_MODE firmata::SET_PIN_MODE // set a pin to INPUT/OUTPUT/PWM/etc
#ifdef SET_DIGITAL_PIN_VALUE
#undef SET_DIGITAL_PIN_VALUE
#endif
#define SET_DIGITAL_PIN_VALUE firmata::SET_DIGITAL_PIN_VALUE // set value of an individual digital pin
//
#ifdef REPORT_VERSION
#undef REPORT_VERSION
#endif
#define REPORT_VERSION firmata::REPORT_VERSION // report protocol version
#ifdef SYSTEM_RESET
#undef SYSTEM_RESET
#endif
#define SYSTEM_RESET firmata::SYSTEM_RESET // reset from MIDI
//
#ifdef START_SYSEX
#undef START_SYSEX
#endif
#define START_SYSEX firmata::START_SYSEX // start a MIDI Sysex message
#ifdef END_SYSEX
#undef END_SYSEX
#endif
#define END_SYSEX firmata::END_SYSEX // end a MIDI Sysex message
// extended command set using sysex (0-127/0x00-0x7F)
/* 0x00-0x0F reserved for user-defined commands */
#ifdef SERIAL_MESSAGE
#undef SERIAL_MESSAGE
#endif
#define SERIAL_MESSAGE firmata::SERIAL_DATA // communicate with serial devices, including other boards
#ifdef ENCODER_DATA
#undef ENCODER_DATA
#endif
#define ENCODER_DATA firmata::ENCODER_DATA // reply with encoders current positions
#ifdef SERVO_CONFIG
#undef SERVO_CONFIG
#endif
#define SERVO_CONFIG firmata::SERVO_CONFIG // set max angle, minPulse, maxPulse, freq
#ifdef STRING_DATA
#undef STRING_DATA
#endif
#define STRING_DATA firmata::STRING_DATA // a string message with 14-bits per char
#ifdef STEPPER_DATA
#undef STEPPER_DATA
#endif
#define STEPPER_DATA firmata::STEPPER_DATA // control a stepper motor
#ifdef ONEWIRE_DATA
#undef ONEWIRE_DATA
#endif
#define ONEWIRE_DATA firmata::ONEWIRE_DATA // send an OneWire read/write/reset/select/skip/search request
#ifdef SHIFT_DATA
#undef SHIFT_DATA
#endif
#define SHIFT_DATA firmata::SHIFT_DATA // a bitstream to/from a shift register
#ifdef I2C_REQUEST
#undef I2C_REQUEST
#endif
#define I2C_REQUEST firmata::I2C_REQUEST // send an I2C read/write request
#ifdef I2C_REPLY
#undef I2C_REPLY
#endif
#define I2C_REPLY firmata::I2C_REPLY // a reply to an I2C read request
#ifdef I2C_CONFIG
#undef I2C_CONFIG
#endif
#define I2C_CONFIG firmata::I2C_CONFIG // config I2C settings such as delay times and power pins
#ifdef REPORT_FIRMWARE
#undef REPORT_FIRMWARE
#endif
#define REPORT_FIRMWARE firmata::REPORT_FIRMWARE // report name and version of the firmware
#ifdef EXTENDED_ANALOG
#undef EXTENDED_ANALOG
#endif
#define EXTENDED_ANALOG firmata::EXTENDED_ANALOG // analog write (PWM, Servo, etc) to any pin
#ifdef PIN_STATE_QUERY
#undef PIN_STATE_QUERY
#endif
#define PIN_STATE_QUERY firmata::PIN_STATE_QUERY // ask for a pin's current mode and value
#ifdef PIN_STATE_RESPONSE
#undef PIN_STATE_RESPONSE
#endif
#define PIN_STATE_RESPONSE firmata::PIN_STATE_RESPONSE // reply with pin's current mode and value
#ifdef CAPABILITY_QUERY
#undef CAPABILITY_QUERY
#endif
#define CAPABILITY_QUERY firmata::CAPABILITY_QUERY // ask for supported modes and resolution of all pins
#ifdef CAPABILITY_RESPONSE
#undef CAPABILITY_RESPONSE
#endif
#define CAPABILITY_RESPONSE firmata::CAPABILITY_RESPONSE // reply with supported modes and resolution
#ifdef ANALOG_MAPPING_QUERY
#undef ANALOG_MAPPING_QUERY
#endif
#define ANALOG_MAPPING_QUERY firmata::ANALOG_MAPPING_QUERY // ask for mapping of analog to pin numbers
#ifdef ANALOG_MAPPING_RESPONSE
#undef ANALOG_MAPPING_RESPONSE
#endif
#define ANALOG_MAPPING_RESPONSE firmata::ANALOG_MAPPING_RESPONSE // reply with mapping info
#ifdef SAMPLING_INTERVAL
#undef SAMPLING_INTERVAL
#endif
#define SAMPLING_INTERVAL firmata::SAMPLING_INTERVAL // set the poll rate of the main loop
#ifdef SCHEDULER_DATA
#undef SCHEDULER_DATA
#endif
#define SCHEDULER_DATA firmata::SCHEDULER_DATA // send a createtask/deletetask/addtotask/schedule/querytasks/querytask request to the scheduler
#ifdef SYSEX_NON_REALTIME
#undef SYSEX_NON_REALTIME
#endif
#define SYSEX_NON_REALTIME firmata::SYSEX_NON_REALTIME // MIDI Reserved for non-realtime messages
#ifdef SYSEX_REALTIME
#undef SYSEX_REALTIME
#endif
#define SYSEX_REALTIME firmata::SYSEX_REALTIME // MIDI Reserved for realtime messages
// pin modes
#ifdef PIN_MODE_INPUT
#undef PIN_MODE_INPUT
#endif
#define PIN_MODE_INPUT firmata::PIN_MODE_INPUT // same as INPUT defined in Arduino.h
#ifdef PIN_MODE_OUTPUT
#undef PIN_MODE_OUTPUT
#endif
#define PIN_MODE_OUTPUT firmata::PIN_MODE_OUTPUT // same as OUTPUT defined in Arduino.h
#ifdef PIN_MODE_ANALOG
#undef PIN_MODE_ANALOG
#endif
#define PIN_MODE_ANALOG firmata::PIN_MODE_ANALOG // analog pin in analogInput mode
#ifdef PIN_MODE_PWM
#undef PIN_MODE_PWM
#endif
#define PIN_MODE_PWM firmata::PIN_MODE_PWM // digital pin in PWM output mode
#ifdef PIN_MODE_SERVO
#undef PIN_MODE_SERVO
#endif
#define PIN_MODE_SERVO firmata::PIN_MODE_SERVO // digital pin in Servo output mode
#ifdef PIN_MODE_SHIFT
#undef PIN_MODE_SHIFT
#endif
#define PIN_MODE_SHIFT firmata::PIN_MODE_SHIFT // shiftIn/shiftOut mode
#ifdef PIN_MODE_I2C
#undef PIN_MODE_I2C
#endif
#define PIN_MODE_I2C firmata::PIN_MODE_I2C // pin included in I2C setup
#ifdef PIN_MODE_ONEWIRE
#undef PIN_MODE_ONEWIRE
#endif
#define PIN_MODE_ONEWIRE firmata::PIN_MODE_ONEWIRE // pin configured for 1-wire
#ifdef PIN_MODE_STEPPER
#undef PIN_MODE_STEPPER
#endif
#define PIN_MODE_STEPPER firmata::PIN_MODE_STEPPER // pin configured for stepper motor
#ifdef PIN_MODE_ENCODER
#undef PIN_MODE_ENCODER
#endif
#define PIN_MODE_ENCODER firmata::PIN_MODE_ENCODER // pin configured for rotary encoders
#ifdef PIN_MODE_SERIAL
#undef PIN_MODE_SERIAL
#endif
#define PIN_MODE_SERIAL firmata::PIN_MODE_SERIAL // pin configured for serial communication
#ifdef PIN_MODE_PULLUP
#undef PIN_MODE_PULLUP
#endif
#define PIN_MODE_PULLUP firmata::PIN_MODE_PULLUP // enable internal pull-up resistor for pin
#ifdef PIN_MODE_IGNORE
#undef PIN_MODE_IGNORE
#endif
#define PIN_MODE_IGNORE firmata::PIN_MODE_IGNORE // pin configured to be ignored by digitalWrite and capabilityResponse
#ifdef TOTAL_PIN_MODES
#undef TOTAL_PIN_MODES
#endif
#define TOTAL_PIN_MODES firmata::TOTAL_PIN_MODES
#endif // FirmataConstants_h

View File

@ -0,0 +1,431 @@
/*
FirmataMarshaller.cpp
Copyright (c) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2009-2016 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
//******************************************************************************
//* Includes
//******************************************************************************
#include "FirmataMarshaller.h"
#if defined(__cplusplus) && !defined(ARDUINO)
#include <cstring>
#else
#include <string.h>
#endif
#include "FirmataConstants.h"
using namespace firmata;
//******************************************************************************
//* Support Functions
//******************************************************************************
/**
* Request or halt a stream of analog readings from the Firmata host application. The range of pins is
* limited to [0..15] when using the REPORT_ANALOG. The maximum result of the REPORT_ANALOG is limited to 14 bits
* (16384). To increase the pin range or value, see the documentation for the EXTENDED_ANALOG
* message.
* @param pin The analog pin for which to request the value (limited to pins 0 - 15).
* @param stream_enable A zero value will disable the stream, a non-zero will enable the stream
* @note The maximum resulting value is 14-bits (16384).
*/
void FirmataMarshaller::reportAnalog(uint8_t pin, bool stream_enable)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
// pin can only be 0-15, so chop higher bits
FirmataStream->write(REPORT_ANALOG | (pin & 0xF));
FirmataStream->write(stream_enable);
}
/**
* Request or halt an 8-bit port stream from the Firmata host application (protocol v2 and later).
* Send 14-bits in a single digital message (protocol v1).
* @param portNumber The port number for which to request the value. Note that this is not the same as a "port" on the
* physical microcontroller. Ports are defined in order per every 8 pins in ascending order
* of the Arduino digital pin numbering scheme. Port 0 = pins D0 - D7, port 1 = pins D8 - D15, etc.
* @param stream_enable A zero value will disable the stream, a non-zero will enable the stream
*/
void FirmataMarshaller::reportDigitalPort(uint8_t portNumber, bool stream_enable)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
FirmataStream->write(REPORT_DIGITAL | (portNumber & 0xF));
FirmataStream->write(stream_enable);
}
/**
* An alternative to the normal analog message, this extended version allows addressing beyond
* pin 15 and supports sending analog values with any number of bits.
* @param pin The analog pin to which the value is sent.
* @param bytec The size of the storage for the analog value
* @param bytev The pointer to the location of the analog value
*/
void FirmataMarshaller::sendExtendedAnalog(uint8_t pin, size_t bytec, uint8_t * bytev)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
FirmataStream->write(START_SYSEX);
FirmataStream->write(EXTENDED_ANALOG);
FirmataStream->write(pin);
encodeByteStream(bytec, bytev, bytec);
FirmataStream->write(END_SYSEX);
}
/**
* Transform 8-bit stream into 7-bit message
* @param bytec The number of data bytes in the message.
* @param bytev A pointer to the array of data bytes to send in the message.
* @param max_bytes Force message to be n bytes, regardless of data bits.
*/
void FirmataMarshaller::encodeByteStream (size_t bytec, uint8_t * bytev, size_t max_bytes)
const
{
static const size_t transmit_bits = 7;
static const uint8_t transmit_mask = ((1 << transmit_bits) - 1);
size_t bytes_sent = 0;
size_t outstanding_bits = 0;
uint8_t outstanding_bit_cache = *bytev;
if ( !max_bytes ) { max_bytes = static_cast<size_t>(-1); }
for (size_t i = 0 ; (i < bytec) && (bytes_sent < max_bytes) ; ++i) {
uint8_t transmit_byte = (outstanding_bit_cache|(bytev[i] << outstanding_bits));
FirmataStream->write(transmit_mask & transmit_byte);
++bytes_sent;
outstanding_bit_cache = (bytev[i] >> (transmit_bits - outstanding_bits));
outstanding_bits = (outstanding_bits + (8 - transmit_bits));
for ( ; (outstanding_bits >= transmit_bits) && (bytes_sent < max_bytes) ; ) {
transmit_byte = outstanding_bit_cache;
FirmataStream->write(transmit_mask & transmit_byte);
++bytes_sent;
outstanding_bit_cache >>= transmit_bits;
outstanding_bits -= transmit_bits;
}
}
if ( outstanding_bits && (bytes_sent < max_bytes) ) {
FirmataStream->write(static_cast<uint8_t>((1 << outstanding_bits) - 1) & outstanding_bit_cache);
}
}
//******************************************************************************
//* Constructors
//******************************************************************************
/**
* The FirmataMarshaller class.
*/
FirmataMarshaller::FirmataMarshaller()
:
FirmataStream((Stream *)NULL)
{
}
//******************************************************************************
//* Public Methods
//******************************************************************************
/**
* Reassign the Firmata stream transport.
* @param s A reference to the Stream transport object. This can be any type of
* transport that implements the Stream interface. Some examples include Ethernet, WiFi
* and other UARTs on the board (Serial1, Serial2, etc).
*/
void FirmataMarshaller::begin(Stream &s)
{
FirmataStream = &s;
}
/**
* Closes the FirmataMarshaller stream by setting its stream reference to `(Stream *)NULL`
*/
void FirmataMarshaller::end(void)
{
FirmataStream = (Stream *)NULL;
}
//******************************************************************************
//* Output Stream Handling
//******************************************************************************
/**
* Query the target's firmware name and version
*/
void FirmataMarshaller::queryFirmwareVersion(void)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
FirmataStream->write(START_SYSEX);
FirmataStream->write(REPORT_FIRMWARE);
FirmataStream->write(END_SYSEX);
}
/**
* Query the target's Firmata protocol version
*/
void FirmataMarshaller::queryVersion(void)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
FirmataStream->write(REPORT_VERSION);
}
/**
* Halt the stream of analog readings from the Firmata host application. The range of pins is
* limited to [0..15] when using the REPORT_ANALOG. The maximum result of the REPORT_ANALOG is limited to 14 bits
* (16384). To increase the pin range or value, see the documentation for the EXTENDED_ANALOG
* message.
* @param pin The analog pin for which to request the value (limited to pins 0 - 15).
*/
void FirmataMarshaller::reportAnalogDisable(uint8_t pin)
const
{
reportAnalog(pin, false);
}
/**
* Request a stream of analog readings from the Firmata host application. The range of pins is
* limited to [0..15] when using the REPORT_ANALOG. The maximum result of the REPORT_ANALOG is limited to 14 bits
* (16384). To increase the pin range or value, see the documentation for the EXTENDED_ANALOG
* message.
* @param pin The analog pin for which to request the value (limited to pins 0 - 15).
*/
void FirmataMarshaller::reportAnalogEnable(uint8_t pin)
const
{
reportAnalog(pin, true);
}
/**
* Halt an 8-bit port stream from the Firmata host application (protocol v2 and later).
* Send 14-bits in a single digital message (protocol v1).
* @param portNumber The port number for which to request the value. Note that this is not the same as a "port" on the
* physical microcontroller. Ports are defined in order per every 8 pins in ascending order
* of the Arduino digital pin numbering scheme. Port 0 = pins D0 - D7, port 1 = pins D8 - D15, etc.
*/
void FirmataMarshaller::reportDigitalPortDisable(uint8_t portNumber)
const
{
reportDigitalPort(portNumber, false);
}
/**
* Request an 8-bit port stream from the Firmata host application (protocol v2 and later).
* Send 14-bits in a single digital message (protocol v1).
* @param portNumber The port number for which to request the value. Note that this is not the same as a "port" on the
* physical microcontroller. Ports are defined in order per every 8 pins in ascending order
* of the Arduino digital pin numbering scheme. Port 0 = pins D0 - D7, port 1 = pins D8 - D15, etc.
*/
void FirmataMarshaller::reportDigitalPortEnable(uint8_t portNumber)
const
{
reportDigitalPort(portNumber, true);
}
/**
* Send an analog message to the Firmata host application. The range of pins is limited to [0..15]
* when using the ANALOG_MESSAGE. The maximum value of the ANALOG_MESSAGE is limited to 14 bits
* (16384). To increase the pin range or value, see the documentation for the EXTENDED_ANALOG
* message.
* @param pin The analog pin to which the value is sent.
* @param value The value of the analog pin (0 - 1024 for 10-bit analog, 0 - 4096 for 12-bit, etc).
* @note The maximum value is 14-bits (16384).
*/
void FirmataMarshaller::sendAnalog(uint8_t pin, uint16_t value)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
if ( (0xF >= pin) && (0x3FFF >= value) ) {
FirmataStream->write(ANALOG_MESSAGE|pin);
encodeByteStream(sizeof(value), reinterpret_cast<uint8_t *>(&value), sizeof(value));
} else {
sendExtendedAnalog(pin, sizeof(value), reinterpret_cast<uint8_t *>(&value));
}
}
/**
* Send an analog mapping query to the Firmata host application. The resulting sysex message will
* have an ANALOG_MAPPING_RESPONSE command byte, followed by a list of pins [0-n]; where each
* pin will specify its corresponding analog pin number or 0x7F (127) if not applicable.
*/
void FirmataMarshaller::sendAnalogMappingQuery(void)
const
{
sendSysex(ANALOG_MAPPING_QUERY, 0, NULL);
}
/**
* Send a capability query to the Firmata host application. The resulting sysex message will have
* a CAPABILITY_RESPONSE command byte, followed by a list of byte tuples (mode and mode resolution)
* for each pin; where each pin list is terminated by 0x7F (127).
*/
void FirmataMarshaller::sendCapabilityQuery(void)
const
{
sendSysex(CAPABILITY_QUERY, 0, NULL);
}
/**
* Send a single digital pin value to the Firmata host application.
* @param pin The digital pin to send the value of.
* @param value The value of the pin.
*/
void FirmataMarshaller::sendDigital(uint8_t pin, uint8_t value)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
FirmataStream->write(SET_DIGITAL_PIN_VALUE);
FirmataStream->write(pin & 0x7F);
FirmataStream->write(value != 0);
}
/**
* Send an 8-bit port in a single digital message (protocol v2 and later).
* Send 14-bits in a single digital message (protocol v1).
* @param portNumber The port number to send. Note that this is not the same as a "port" on the
* physical microcontroller. Ports are defined in order per every 8 pins in ascending order
* of the Arduino digital pin numbering scheme. Port 0 = pins D0 - D7, port 1 = pins D8 - D15, etc.
* @param portData The value of the port. The value of each pin in the port is represented by a bit.
*/
void FirmataMarshaller::sendDigitalPort(uint8_t portNumber, uint16_t portData)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
FirmataStream->write(DIGITAL_MESSAGE | (portNumber & 0xF));
// Tx bits 0-6 (protocol v1 and higher)
// Tx bits 7-13 (bit 7 only for protocol v2 and higher)
encodeByteStream(sizeof(portData), reinterpret_cast<uint8_t *>(&portData), sizeof(portData));
}
/**
* Sends the firmware name and version to the Firmata host application.
* @param major The major verison number
* @param minor The minor version number
* @param bytec The length of the firmware name
* @param bytev The firmware name array
*/
void FirmataMarshaller::sendFirmwareVersion(uint8_t major, uint8_t minor, size_t bytec, uint8_t *bytev)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
size_t i;
FirmataStream->write(START_SYSEX);
FirmataStream->write(REPORT_FIRMWARE);
FirmataStream->write(major);
FirmataStream->write(minor);
for (i = 0; i < bytec; ++i) {
encodeByteStream(sizeof(bytev[i]), reinterpret_cast<uint8_t *>(&bytev[i]));
}
FirmataStream->write(END_SYSEX);
}
/**
* Send the Firmata protocol version to the Firmata host application.
* @param major The major verison number
* @param minor The minor version number
*/
void FirmataMarshaller::sendVersion(uint8_t major, uint8_t minor)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
FirmataStream->write(REPORT_VERSION);
FirmataStream->write(major);
FirmataStream->write(minor);
}
/**
* Send the pin mode/configuration. The pin configuration (or mode) in Firmata represents the
* current function of the pin. Examples are digital input or output, analog input, pwm, i2c,
* serial (uart), etc.
* @param pin The pin to configure.
* @param config The configuration value for the specified pin.
*/
void FirmataMarshaller::sendPinMode(uint8_t pin, uint8_t config)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
FirmataStream->write(SET_PIN_MODE);
FirmataStream->write(pin);
FirmataStream->write(config);
}
/**
* Send a pin state query to the Firmata host application. The resulting sysex message will have
* a PIN_STATE_RESPONSE command byte, followed by the pin number, the pin mode and a stream of
* bits to indicate any *data* written to the pin (pin state).
* @param pin The pin to query
* @note The pin state is any data written to the pin (i.e. pin state != pin value)
*/
void FirmataMarshaller::sendPinStateQuery(uint8_t pin)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
FirmataStream->write(START_SYSEX);
FirmataStream->write(PIN_STATE_QUERY);
FirmataStream->write(pin);
FirmataStream->write(END_SYSEX);
}
/**
* Send a sysex message where all values after the command byte are packet as 2 7-bit bytes
* (this is not always the case so this function is not always used to send sysex messages).
* @param command The sysex command byte.
* @param bytec The number of data bytes in the message (excludes start, command and end bytes).
* @param bytev A pointer to the array of data bytes to send in the message.
*/
void FirmataMarshaller::sendSysex(uint8_t command, size_t bytec, uint8_t *bytev)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
size_t i;
FirmataStream->write(START_SYSEX);
FirmataStream->write(command);
for (i = 0; i < bytec; ++i) {
encodeByteStream(sizeof(bytev[i]), reinterpret_cast<uint8_t *>(&bytev[i]));
}
FirmataStream->write(END_SYSEX);
}
/**
* Send a string to the Firmata host application.
* @param string A pointer to the char string
*/
void FirmataMarshaller::sendString(const char *string)
const
{
sendSysex(STRING_DATA, strlen(string), reinterpret_cast<uint8_t *>(const_cast<char *>(string)));
}
/**
* The sampling interval sets how often analog data and i2c data is reported to the client.
* @param interval_ms The interval (in milliseconds) at which to sample
* @note The default sampling interval is 19ms
*/
void FirmataMarshaller::setSamplingInterval(uint16_t interval_ms)
const
{
sendSysex(SAMPLING_INTERVAL, sizeof(interval_ms), reinterpret_cast<uint8_t *>(&interval_ms));
}
/**
* Perform a software reset on the target. For example, StandardFirmata.ino will initialize
* everything to a known state and reset the parsing buffer.
*/
void FirmataMarshaller::systemReset(void)
const
{
if ( (Stream *)NULL == FirmataStream ) { return; }
FirmataStream->write(SYSTEM_RESET);
}

View File

@ -0,0 +1,75 @@
/*
FirmataMarshaller.h
Copyright (c) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2009-2016 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
#ifndef FirmataMarshaller_h
#define FirmataMarshaller_h
#if defined(__cplusplus) && !defined(ARDUINO)
#include <cstddef>
#include <cstdint>
#else
#include <stddef.h>
#include <stdint.h>
#endif
#include <Stream.h>
namespace firmata {
class FirmataMarshaller
{
friend class FirmataClass;
public:
/* constructors */
FirmataMarshaller();
/* public methods */
void begin(Stream &s);
void end();
/* serial send handling */
void queryFirmwareVersion(void) const;
void queryVersion(void) const;
void reportAnalogDisable(uint8_t pin) const;
void reportAnalogEnable(uint8_t pin) const;
void reportDigitalPortDisable(uint8_t portNumber) const;
void reportDigitalPortEnable(uint8_t portNumber) const;
void sendAnalog(uint8_t pin, uint16_t value) const;
void sendAnalogMappingQuery(void) const;
void sendCapabilityQuery(void) const;
void sendDigital(uint8_t pin, uint8_t value) const;
void sendDigitalPort(uint8_t portNumber, uint16_t portData) const;
void sendFirmwareVersion(uint8_t major, uint8_t minor, size_t bytec, uint8_t *bytev) const;
void sendVersion(uint8_t major, uint8_t minor) const;
void sendPinMode(uint8_t pin, uint8_t config) const;
void sendPinStateQuery(uint8_t pin) const;
void sendString(const char *string) const;
void sendSysex(uint8_t command, size_t bytec, uint8_t *bytev) const;
void setSamplingInterval(uint16_t interval_ms) const;
void systemReset(void) const;
private:
/* utility methods */
void reportAnalog(uint8_t pin, bool stream_enable) const;
void reportDigitalPort(uint8_t portNumber, bool stream_enable) const;
void sendExtendedAnalog(uint8_t pin, size_t bytec, uint8_t * bytev) const;
void encodeByteStream (size_t bytec, uint8_t * bytev, size_t max_bytes = 0) const;
Stream * FirmataStream;
};
} // namespace firmata
#endif /* FirmataMarshaller_h */

View File

@ -0,0 +1,480 @@
/*
FirmataParser.cpp
Copyright (c) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2009-2016 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
//******************************************************************************
//* Includes
//******************************************************************************
#include "FirmataParser.h"
#include "FirmataConstants.h"
using namespace firmata;
//******************************************************************************
//* Constructors
//******************************************************************************
/**
* The FirmataParser class.
* @param dataBuffer A pointer to an external buffer used to store parsed data
* @param dataBufferSize The size of the external buffer
*/
FirmataParser::FirmataParser(uint8_t * const dataBuffer, size_t dataBufferSize)
:
dataBuffer(dataBuffer),
dataBufferSize(dataBufferSize),
executeMultiByteCommand(0),
multiByteChannel(0),
waitForData(0),
parsingSysex(false),
sysexBytesRead(0),
currentAnalogCallbackContext((void *)NULL),
currentDigitalCallbackContext((void *)NULL),
currentReportAnalogCallbackContext((void *)NULL),
currentReportDigitalCallbackContext((void *)NULL),
currentPinModeCallbackContext((void *)NULL),
currentPinValueCallbackContext((void *)NULL),
currentReportFirmwareCallbackContext((void *)NULL),
currentReportVersionCallbackContext((void *)NULL),
currentDataBufferOverflowCallbackContext((void *)NULL),
currentStringCallbackContext((void *)NULL),
currentSysexCallbackContext((void *)NULL),
currentSystemResetCallbackContext((void *)NULL),
currentAnalogCallback((callbackFunction)NULL),
currentDigitalCallback((callbackFunction)NULL),
currentReportAnalogCallback((callbackFunction)NULL),
currentReportDigitalCallback((callbackFunction)NULL),
currentPinModeCallback((callbackFunction)NULL),
currentPinValueCallback((callbackFunction)NULL),
currentDataBufferOverflowCallback((dataBufferOverflowCallbackFunction)NULL),
currentStringCallback((stringCallbackFunction)NULL),
currentSysexCallback((sysexCallbackFunction)NULL),
currentReportFirmwareCallback((versionCallbackFunction)NULL),
currentReportVersionCallback((systemCallbackFunction)NULL),
currentSystemResetCallback((systemCallbackFunction)NULL)
{
allowBufferUpdate = ((uint8_t *)NULL == dataBuffer);
}
//******************************************************************************
//* Public Methods
//******************************************************************************
//------------------------------------------------------------------------------
// Serial Receive Handling
/**
* Parse data from the input stream.
* @param inputData A single byte to be added to the parser.
*/
void FirmataParser::parse(uint8_t inputData)
{
uint8_t command;
if (parsingSysex) {
if (inputData == END_SYSEX) {
//stop sysex byte
parsingSysex = false;
//fire off handler function
processSysexMessage();
} else {
//normal data byte - add to buffer
bufferDataAtPosition(inputData, sysexBytesRead);
++sysexBytesRead;
}
} else if ( (waitForData > 0) && (inputData < 128) ) {
--waitForData;
bufferDataAtPosition(inputData, waitForData);
if ( (waitForData == 0) && executeMultiByteCommand ) { // got the whole message
switch (executeMultiByteCommand) {
case ANALOG_MESSAGE:
if (currentAnalogCallback) {
(*currentAnalogCallback)(currentAnalogCallbackContext,
multiByteChannel,
(dataBuffer[0] << 7)
+ dataBuffer[1]);
}
break;
case DIGITAL_MESSAGE:
if (currentDigitalCallback) {
(*currentDigitalCallback)(currentDigitalCallbackContext,
multiByteChannel,
(dataBuffer[0] << 7)
+ dataBuffer[1]);
}
break;
case SET_PIN_MODE:
if (currentPinModeCallback)
(*currentPinModeCallback)(currentPinModeCallbackContext, dataBuffer[1], dataBuffer[0]);
break;
case SET_DIGITAL_PIN_VALUE:
if (currentPinValueCallback)
(*currentPinValueCallback)(currentPinValueCallbackContext, dataBuffer[1], dataBuffer[0]);
break;
case REPORT_ANALOG:
if (currentReportAnalogCallback)
(*currentReportAnalogCallback)(currentReportAnalogCallbackContext, multiByteChannel, dataBuffer[0]);
break;
case REPORT_DIGITAL:
if (currentReportDigitalCallback)
(*currentReportDigitalCallback)(currentReportDigitalCallbackContext, multiByteChannel, dataBuffer[0]);
break;
}
executeMultiByteCommand = 0;
}
} else {
// remove channel info from command byte if less than 0xF0
if (inputData < 0xF0) {
command = inputData & 0xF0;
multiByteChannel = inputData & 0x0F;
} else {
command = inputData;
// commands in the 0xF* range don't use channel data
}
switch (command) {
case ANALOG_MESSAGE:
case DIGITAL_MESSAGE:
case SET_PIN_MODE:
case SET_DIGITAL_PIN_VALUE:
waitForData = 2; // two data bytes needed
executeMultiByteCommand = command;
break;
case REPORT_ANALOG:
case REPORT_DIGITAL:
waitForData = 1; // one data byte needed
executeMultiByteCommand = command;
break;
case START_SYSEX:
parsingSysex = true;
sysexBytesRead = 0;
break;
case SYSTEM_RESET:
systemReset();
break;
case REPORT_VERSION:
if (currentReportVersionCallback)
(*currentReportVersionCallback)(currentReportVersionCallbackContext);
break;
}
}
}
/**
* @return Returns true if the parser is actively parsing data.
*/
bool FirmataParser::isParsingMessage(void)
const
{
return (waitForData > 0 || parsingSysex);
}
/**
* Provides a mechanism to either set or update the working buffer of the parser.
* The method will be enabled when no buffer has been provided, or an overflow
* condition exists.
* @param dataBuffer A pointer to an external buffer used to store parsed data
* @param dataBufferSize The size of the external buffer
*/
int FirmataParser::setDataBufferOfSize(uint8_t * dataBuffer, size_t dataBufferSize)
{
int result;
if ( !allowBufferUpdate ) {
result = __LINE__;
} else if ((uint8_t *)NULL == dataBuffer) {
result = __LINE__;
} else {
this->dataBuffer = dataBuffer;
this->dataBufferSize = dataBufferSize;
allowBufferUpdate = false;
result = 0;
}
return result;
}
/**
* Attach a generic sysex callback function to a command (options are: ANALOG_MESSAGE,
* DIGITAL_MESSAGE, REPORT_ANALOG, REPORT DIGITAL, SET_PIN_MODE and SET_DIGITAL_PIN_VALUE).
* @param command The ID of the command to attach a callback function to.
* @param newFunction A reference to the callback function to attach.
* @param context An optional context to be provided to the callback function (NULL by default).
* @note The context parameter is provided so you can pass a parameter, by reference, to
* your callback function.
*/
void FirmataParser::attach(uint8_t command, callbackFunction newFunction, void * context)
{
switch (command) {
case ANALOG_MESSAGE:
currentAnalogCallback = newFunction;
currentAnalogCallbackContext = context;
break;
case DIGITAL_MESSAGE:
currentDigitalCallback = newFunction;
currentDigitalCallbackContext = context;
break;
case REPORT_ANALOG:
currentReportAnalogCallback = newFunction;
currentReportAnalogCallbackContext = context;
break;
case REPORT_DIGITAL:
currentReportDigitalCallback = newFunction;
currentReportDigitalCallbackContext = context;
break;
case SET_PIN_MODE:
currentPinModeCallback = newFunction;
currentPinModeCallbackContext = context;
break;
case SET_DIGITAL_PIN_VALUE:
currentPinValueCallback = newFunction;
currentPinValueCallbackContext = context;
break;
}
}
/**
* Attach a version callback function (supported option: REPORT_FIRMWARE).
* @param command The ID of the command to attach a callback function to.
* @param newFunction A reference to the callback function to attach.
* @param context An optional context to be provided to the callback function (NULL by default).
* @note The context parameter is provided so you can pass a parameter, by reference, to
* your callback function.
*/
void FirmataParser::attach(uint8_t command, versionCallbackFunction newFunction, void * context)
{
switch (command) {
case REPORT_FIRMWARE:
currentReportFirmwareCallback = newFunction;
currentReportFirmwareCallbackContext = context;
break;
}
}
/**
* Attach a system callback function (supported options are: SYSTEM_RESET, REPORT_VERSION).
* @param command The ID of the command to attach a callback function to.
* @param newFunction A reference to the callback function to attach.
* @param context An optional context to be provided to the callback function (NULL by default).
* @note The context parameter is provided so you can pass a parameter, by reference, to
* your callback function.
*/
void FirmataParser::attach(uint8_t command, systemCallbackFunction newFunction, void * context)
{
switch (command) {
case REPORT_VERSION:
currentReportVersionCallback = newFunction;
currentReportVersionCallbackContext = context;
break;
case SYSTEM_RESET:
currentSystemResetCallback = newFunction;
currentSystemResetCallbackContext = context;
break;
}
}
/**
* Attach a callback function for the STRING_DATA command.
* @param command Must be set to STRING_DATA or it will be ignored.
* @param newFunction A reference to the string callback function to attach.
* @param context An optional context to be provided to the callback function (NULL by default).
* @note The context parameter is provided so you can pass a parameter, by reference, to
* your callback function.
*/
void FirmataParser::attach(uint8_t command, stringCallbackFunction newFunction, void * context)
{
switch (command) {
case STRING_DATA:
currentStringCallback = newFunction;
currentStringCallbackContext = context;
break;
}
}
/**
* Attach a generic sysex callback function to sysex command.
* @param command The ID of the command to attach a callback function to.
* @param newFunction A reference to the sysex callback function to attach.
* @param context An optional context to be provided to the callback function (NULL by default).
* @note The context parameter is provided so you can pass a parameter, by reference, to
* your callback function.
*/
void FirmataParser::attach(uint8_t command, sysexCallbackFunction newFunction, void * context)
{
(void)command;
currentSysexCallback = newFunction;
currentSysexCallbackContext = context;
}
/**
* Attach a buffer overflow callback
* @param newFunction A reference to the buffer overflow callback function to attach.
* @param context An optional context to be provided to the callback function (NULL by default).
* @note The context parameter is provided so you can pass a parameter, by reference, to
* your callback function.
*/
void FirmataParser::attach(dataBufferOverflowCallbackFunction newFunction, void * context)
{
currentDataBufferOverflowCallback = newFunction;
currentDataBufferOverflowCallbackContext = context;
}
/**
* Detach a callback function for a specified command (such as SYSTEM_RESET, STRING_DATA,
* ANALOG_MESSAGE, DIGITAL_MESSAGE, etc).
* @param command The ID of the command to detatch the callback function from.
*/
void FirmataParser::detach(uint8_t command)
{
switch (command) {
case REPORT_FIRMWARE:
attach(command, (versionCallbackFunction)NULL, NULL);
break;
case REPORT_VERSION:
case SYSTEM_RESET:
attach(command, (systemCallbackFunction)NULL, NULL);
break;
case STRING_DATA:
attach(command, (stringCallbackFunction)NULL, NULL);
break;
case START_SYSEX:
attach(command, (sysexCallbackFunction)NULL, NULL);
break;
default:
attach(command, (callbackFunction)NULL, NULL);
break;
}
}
/**
* Detach the buffer overflow callback
* @param <unused> Any pointer of type dataBufferOverflowCallbackFunction.
*/
void FirmataParser::detach(dataBufferOverflowCallbackFunction)
{
currentDataBufferOverflowCallback = (dataBufferOverflowCallbackFunction)NULL;
currentDataBufferOverflowCallbackContext = (void *)NULL;
}
//******************************************************************************
//* Private Methods
//******************************************************************************
/**
* Buffer abstraction to prevent memory corruption
* @param data The byte to put into the buffer
* @param pos The position to insert the byte into the buffer
* @return writeError A boolean to indicate if an error occured
* @private
*/
bool FirmataParser::bufferDataAtPosition(const uint8_t data, const size_t pos)
{
bool bufferOverflow = (pos >= dataBufferSize);
// Notify of overflow condition
if ( bufferOverflow
&& ((dataBufferOverflowCallbackFunction)NULL != currentDataBufferOverflowCallback) )
{
allowBufferUpdate = true;
currentDataBufferOverflowCallback(currentDataBufferOverflowCallbackContext);
// Check if overflow was resolved during callback
bufferOverflow = (pos >= dataBufferSize);
}
// Write data to buffer if no overflow condition persist
if ( !bufferOverflow )
{
dataBuffer[pos] = data;
}
return bufferOverflow;
}
/**
* Transform 7-bit firmata message into 8-bit stream
* @param bytec The encoded data byte length of the message (max: 16383).
* @param bytev A pointer to the encoded array of data bytes.
* @return The length of the decoded data.
* @note The conversion will be done in place on the provided buffer.
* @private
*/
size_t FirmataParser::decodeByteStream(size_t bytec, uint8_t * bytev) {
size_t decoded_bytes, i;
for ( i = 0, decoded_bytes = 0 ; i < bytec ; ++decoded_bytes, ++i ) {
bytev[decoded_bytes] = bytev[i];
bytev[decoded_bytes] |= (uint8_t)(bytev[++i] << 7);
}
return decoded_bytes;
}
/**
* Process incoming sysex messages. Handles REPORT_FIRMWARE and STRING_DATA internally.
* Calls callback function for STRING_DATA and all other sysex messages.
* @private
*/
void FirmataParser::processSysexMessage(void)
{
switch (dataBuffer[0]) { //first byte in buffer is command
case REPORT_FIRMWARE:
if (currentReportFirmwareCallback) {
const size_t major_version_offset = 1;
const size_t minor_version_offset = 2;
const size_t string_offset = 3;
// Test for malformed REPORT_FIRMWARE message (used to query firmware prior to Firmata v3.0.0)
if ( 3 > sysexBytesRead ) {
(*currentReportFirmwareCallback)(currentReportFirmwareCallbackContext, 0, 0, (const char *)NULL);
} else {
const size_t end_of_string = (string_offset + decodeByteStream((sysexBytesRead - string_offset), &dataBuffer[string_offset]));
bufferDataAtPosition('\0', end_of_string); // NULL terminate the string
(*currentReportFirmwareCallback)(currentReportFirmwareCallbackContext, (size_t)dataBuffer[major_version_offset], (size_t)dataBuffer[minor_version_offset], (const char *)&dataBuffer[string_offset]);
}
}
break;
case STRING_DATA:
if (currentStringCallback) {
const size_t string_offset = 1;
const size_t end_of_string = (string_offset + decodeByteStream((sysexBytesRead - string_offset), &dataBuffer[string_offset]));
bufferDataAtPosition('\0', end_of_string); // NULL terminate the string
(*currentStringCallback)(currentStringCallbackContext, (const char *)&dataBuffer[string_offset]);
}
break;
default:
if (currentSysexCallback)
(*currentSysexCallback)(currentSysexCallbackContext, dataBuffer[0], sysexBytesRead - 1, dataBuffer + 1);
}
}
/**
* Resets the system state upon a SYSTEM_RESET message from the host software.
* @private
*/
void FirmataParser::systemReset(void)
{
size_t i;
waitForData = 0; // this flag says the next serial input will be data
executeMultiByteCommand = 0; // execute this after getting multi-byte data
multiByteChannel = 0; // channel data for multiByteCommands
for (i = 0; i < dataBufferSize; ++i) {
dataBuffer[i] = 0;
}
parsingSysex = false;
sysexBytesRead = 0;
if (currentSystemResetCallback)
(*currentSystemResetCallback)(currentSystemResetCallbackContext);
}

View File

@ -0,0 +1,105 @@
/*
FirmataParser.h
Copyright (c) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2009-2016 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
#ifndef FirmataParser_h
#define FirmataParser_h
#if defined(__cplusplus) && !defined(ARDUINO)
#include <cstddef>
#include <cstdint>
#else
#include <stddef.h>
#include <stdint.h>
#endif
namespace firmata {
class FirmataParser
{
public:
/* callback function types */
typedef void (*callbackFunction)(void * context, uint8_t command, uint16_t value);
typedef void (*dataBufferOverflowCallbackFunction)(void * context);
typedef void (*stringCallbackFunction)(void * context, const char * c_str);
typedef void (*sysexCallbackFunction)(void * context, uint8_t command, size_t argc, uint8_t * argv);
typedef void (*systemCallbackFunction)(void * context);
typedef void (*versionCallbackFunction)(void * context, size_t sv_major, size_t sv_minor, const char * firmware);
FirmataParser(uint8_t * dataBuffer = (uint8_t *)NULL, size_t dataBufferSize = 0);
/* serial receive handling */
void parse(uint8_t value);
bool isParsingMessage(void) const;
int setDataBufferOfSize(uint8_t * dataBuffer, size_t dataBufferSize);
/* attach & detach callback functions to messages */
void attach(uint8_t command, callbackFunction newFunction, void * context = NULL);
void attach(dataBufferOverflowCallbackFunction newFunction, void * context = NULL);
void attach(uint8_t command, stringCallbackFunction newFunction, void * context = NULL);
void attach(uint8_t command, sysexCallbackFunction newFunction, void * context = NULL);
void attach(uint8_t command, systemCallbackFunction newFunction, void * context = NULL);
void attach(uint8_t command, versionCallbackFunction newFunction, void * context = NULL);
void detach(uint8_t command);
void detach(dataBufferOverflowCallbackFunction);
private:
/* input message handling */
bool allowBufferUpdate;
uint8_t * dataBuffer; // multi-byte data
size_t dataBufferSize;
uint8_t executeMultiByteCommand; // execute this after getting multi-byte data
uint8_t multiByteChannel; // channel data for multiByteCommands
size_t waitForData; // this flag says the next serial input will be data
/* sysex */
bool parsingSysex;
size_t sysexBytesRead;
/* callback context */
void * currentAnalogCallbackContext;
void * currentDigitalCallbackContext;
void * currentReportAnalogCallbackContext;
void * currentReportDigitalCallbackContext;
void * currentPinModeCallbackContext;
void * currentPinValueCallbackContext;
void * currentReportFirmwareCallbackContext;
void * currentReportVersionCallbackContext;
void * currentDataBufferOverflowCallbackContext;
void * currentStringCallbackContext;
void * currentSysexCallbackContext;
void * currentSystemResetCallbackContext;
/* callback functions */
callbackFunction currentAnalogCallback;
callbackFunction currentDigitalCallback;
callbackFunction currentReportAnalogCallback;
callbackFunction currentReportDigitalCallback;
callbackFunction currentPinModeCallback;
callbackFunction currentPinValueCallback;
dataBufferOverflowCallbackFunction currentDataBufferOverflowCallback;
stringCallbackFunction currentStringCallback;
sysexCallbackFunction currentSysexCallback;
versionCallbackFunction currentReportFirmwareCallback;
systemCallbackFunction currentReportVersionCallback;
systemCallbackFunction currentSystemResetCallback;
/* private methods ------------------------------ */
bool bufferDataAtPosition(const uint8_t data, const size_t pos);
size_t decodeByteStream(size_t bytec, uint8_t * bytev);
void processSysexMessage(void);
void systemReset(void);
};
} // firmata
#endif /* FirmataParser_h */

View File

@ -0,0 +1,458 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

View File

@ -0,0 +1,90 @@
/*
* Firmata is a generic protocol for communicating with microcontrollers
* from software on a host computer. It is intended to work with
* any host computer software package.
*
* To download a host software package, please click on the following link
* to open the list of Firmata client libraries in your default browser.
*
* https://github.com/firmata/arduino#firmata-client-libraries
*/
/*
* This firmware reads all inputs and sends them as fast as it can. It was
* inspired by the ease-of-use of the Arduino2Max program.
*
* This example code is in the public domain.
*/
#include <Firmata.h>
byte pin;
int analogValue;
int previousAnalogValues[TOTAL_ANALOG_PINS];
byte portStatus[TOTAL_PORTS]; // each bit: 1=pin is digital input, 0=other/ignore
byte previousPINs[TOTAL_PORTS];
/* timer variables */
unsigned long currentMillis; // store the current value from millis()
unsigned long previousMillis; // for comparison with currentMillis
/* make sure that the FTDI buffer doesn't go over 60 bytes, otherwise you
get long, random delays. So only read analogs every 20ms or so */
int samplingInterval = 19; // how often to run the main loop (in ms)
void sendPort(byte portNumber, byte portValue)
{
portValue = portValue & portStatus[portNumber];
if (previousPINs[portNumber] != portValue) {
Firmata.sendDigitalPort(portNumber, portValue);
previousPINs[portNumber] = portValue;
}
}
void setup()
{
byte i, port, status;
Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION);
for (pin = 0; pin < TOTAL_PINS; pin++) {
if IS_PIN_DIGITAL(pin) pinMode(PIN_TO_DIGITAL(pin), INPUT);
}
for (port = 0; port < TOTAL_PORTS; port++) {
status = 0;
for (i = 0; i < 8; i++) {
if (IS_PIN_DIGITAL(port * 8 + i)) status |= (1 << i);
}
portStatus[port] = status;
}
Firmata.begin(57600);
}
void loop()
{
byte i;
for (i = 0; i < TOTAL_PORTS; i++) {
sendPort(i, readPort(i, 0xff));
}
/* make sure that the FTDI buffer doesn't go over 60 bytes, otherwise you
get long, random delays. So only read analogs every 20ms or so */
currentMillis = millis();
if (currentMillis - previousMillis > samplingInterval) {
previousMillis += samplingInterval;
while (Firmata.available()) {
Firmata.processInput();
}
for (pin = 0; pin < TOTAL_ANALOG_PINS; pin++) {
analogValue = analogRead(pin);
if (analogValue != previousAnalogValues[pin]) {
Firmata.sendAnalog(pin, analogValue);
previousAnalogValues[pin] = analogValue;
}
}
}
}

View File

@ -0,0 +1,94 @@
/*
* Firmata is a generic protocol for communicating with microcontrollers
* from software on a host computer. It is intended to work with
* any host computer software package.
*
* To download a host software package, please click on the following link
* to open the list of Firmata client libraries in your default browser.
*
* https://github.com/firmata/arduino#firmata-client-libraries
*/
/* This firmware supports as many analog ports as possible, all analog inputs,
* four PWM outputs, and two with servo support.
*
* This example code is in the public domain.
*/
#include <Servo.h>
#include <Firmata.h>
/*==============================================================================
* GLOBAL VARIABLES
*============================================================================*/
/* servos */
Servo servo9, servo10; // one instance per pin
/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting
int analogPin = 0; // counter for reading analog pins
/* timer variables */
unsigned long currentMillis; // store the current value from millis()
unsigned long previousMillis; // for comparison with currentMillis
/*==============================================================================
* FUNCTIONS
*============================================================================*/
void analogWriteCallback(byte pin, int value)
{
switch (pin) {
case 9: servo9.write(value); break;
case 10: servo10.write(value); break;
case 3:
case 5:
case 6:
case 11: // PWM pins
analogWrite(pin, value);
break;
}
}
// -----------------------------------------------------------------------------
// sets bits in a bit array (int) to toggle the reporting of the analogIns
void reportAnalogCallback(byte pin, int value)
{
if (value == 0) {
analogInputsToReport = analogInputsToReport & ~ (1 << pin);
}
else { // everything but 0 enables reporting of that pin
analogInputsToReport = analogInputsToReport | (1 << pin);
}
// TODO: save status to EEPROM here, if changed
}
/*==============================================================================
* SETUP()
*============================================================================*/
void setup()
{
Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION);
Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
servo9.attach(9);
servo10.attach(10);
Firmata.begin(57600);
}
/*==============================================================================
* LOOP()
*============================================================================*/
void loop()
{
while (Firmata.available())
Firmata.processInput();
currentMillis = millis();
if (currentMillis - previousMillis > 20) {
previousMillis += 20; // run this every 20ms
for (analogPin = 0; analogPin < TOTAL_ANALOG_PINS; analogPin++) {
if ( analogInputsToReport & (1 << analogPin) )
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}

View File

@ -0,0 +1,44 @@
/*
* Firmata is a generic protocol for communicating with microcontrollers
* from software on a host computer. It is intended to work with
* any host computer software package.
*
* To download a host software package, please click on the following link
* to open the list of Firmata client libraries in your default browser.
*
* https://github.com/firmata/arduino#firmata-client-libraries
*/
/* This sketch accepts strings and raw sysex messages and echos them back.
*
* This example code is in the public domain.
*/
#include <Firmata.h>
void stringCallback(char *myString)
{
Firmata.sendString(myString);
}
void sysexCallback(byte command, byte argc, byte *argv)
{
Firmata.sendSysex(command, argc, argv);
}
void setup()
{
Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION);
Firmata.attach(STRING_DATA, stringCallback);
Firmata.attach(START_SYSEX, sysexCallback);
Firmata.begin(57600);
}
void loop()
{
while (Firmata.available()) {
Firmata.processInput();
}
}

View File

@ -0,0 +1,458 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

View File

@ -0,0 +1,239 @@
/*
* Firmata is a generic protocol for communicating with microcontrollers
* from software on a host computer. It is intended to work with
* any host computer software package.
*
* To download a host software package, please click on the following link
* to open the list of Firmata client libraries in your default browser.
*
* https://github.com/firmata/arduino#firmata-client-libraries
*/
/*
Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
/*
* This is an old version of StandardFirmata (v2.0). It is kept here because
* its the last version that works on an ATMEGA8 chip. Also, it can be used
* for host software that has not been updated to a newer version of the
* protocol. It also uses the old baud rate of 115200 rather than 57600.
*/
#include <EEPROM.h>
#include <Firmata.h>
/*==============================================================================
* GLOBAL VARIABLES
*============================================================================*/
/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting
int analogPin = 0; // counter for reading analog pins
/* digital pins */
byte reportPINs[TOTAL_PORTS]; // PIN == input port
byte previousPINs[TOTAL_PORTS]; // PIN == input port
byte pinStatus[TOTAL_PINS]; // store pin status, default OUTPUT
byte portStatus[TOTAL_PORTS];
/* timer variables */
unsigned long currentMillis; // store the current value from millis()
unsigned long previousMillis; // for comparison with currentMillis
/*==============================================================================
* FUNCTIONS
*============================================================================*/
void outputPort(byte portNumber, byte portValue)
{
portValue = portValue & ~ portStatus[portNumber];
if (previousPINs[portNumber] != portValue) {
Firmata.sendDigitalPort(portNumber, portValue);
previousPINs[portNumber] = portValue;
Firmata.sendDigitalPort(portNumber, portValue);
}
}
/* -----------------------------------------------------------------------------
* check all the active digital inputs for change of state, then add any events
* to the Serial output queue using Serial.print() */
void checkDigitalInputs(void)
{
byte i, tmp;
for (i = 0; i < TOTAL_PORTS; i++) {
if (reportPINs[i]) {
switch (i) {
case 0: outputPort(0, PIND & ~ B00000011); break; // ignore Rx/Tx 0/1
case 1: outputPort(1, PINB); break;
case 2: outputPort(2, PINC); break;
}
}
}
}
// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
* two bit-arrays that track Digital I/O and PWM status
*/
void setPinModeCallback(byte pin, int mode) {
byte port = 0;
byte offset = 0;
if (pin < 8) {
port = 0;
offset = 0;
} else if (pin < 14) {
port = 1;
offset = 8;
} else if (pin < 22) {
port = 2;
offset = 14;
}
if (pin > 1) { // ignore RxTx (pins 0 and 1)
pinStatus[pin] = mode;
switch (mode) {
case INPUT:
pinMode(pin, INPUT);
portStatus[port] = portStatus[port] & ~ (1 << (pin - offset));
break;
case OUTPUT:
digitalWrite(pin, LOW); // disable PWM
case PWM:
pinMode(pin, OUTPUT);
portStatus[port] = portStatus[port] | (1 << (pin - offset));
break;
//case ANALOG: // TODO figure this out
default:
Firmata.sendString("");
}
// TODO: save status to EEPROM here, if changed
}
}
void analogWriteCallback(byte pin, int value)
{
setPinModeCallback(pin, PIN_MODE_PWM);
analogWrite(pin, value);
}
void digitalWriteCallback(byte port, int value)
{
switch (port) {
case 0: // pins 2-7 (don't change Rx/Tx, pins 0 and 1)
// 0xFF03 == B1111111100000011 0x03 == B00000011
PORTD = (value & ~ 0xFF03) | (PORTD & 0x03);
break;
case 1: // pins 8-13 (14,15 are disabled for the crystal)
PORTB = (byte)value;
break;
case 2: // analog pins used as digital
PORTC = (byte)value;
break;
}
}
// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
*/
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte pin, int value)
{
if (value == 0) {
analogInputsToReport = analogInputsToReport & ~ (1 << pin);
}
else { // everything but 0 enables reporting of that pin
analogInputsToReport = analogInputsToReport | (1 << pin);
}
// TODO: save status to EEPROM here, if changed
}
void reportDigitalCallback(byte port, int value)
{
reportPINs[port] = (byte)value;
if (port == 2) // turn off analog reporting when used as digital
analogInputsToReport = 0;
}
/*==============================================================================
* SETUP()
*============================================================================*/
void setup()
{
byte i;
Firmata.setFirmwareVersion(2, 0);
Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
Firmata.attach(SET_PIN_MODE, setPinModeCallback);
portStatus[0] = B00000011; // ignore Tx/RX pins
portStatus[1] = B11000000; // ignore 14/15 pins
portStatus[2] = B00000000;
// for(i=0; i<TOTAL_PINS; ++i) { // TODO make this work with analogs
for (i = 0; i < 14; ++i) {
setPinModeCallback(i, OUTPUT);
}
// set all outputs to 0 to make sure internal pull-up resistors are off
PORTB = 0; // pins 8-15
PORTC = 0; // analog port
PORTD = 0; // pins 0-7
// TODO rethink the init, perhaps it should report analog on default
for (i = 0; i < TOTAL_PORTS; ++i) {
reportPINs[i] = false;
}
// TODO: load state from EEPROM here
/* send digital inputs here, if enabled, to set the initial state on the
* host computer, since once in the loop(), this firmware will only send
* digital data on change. */
if (reportPINs[0]) outputPort(0, PIND & ~ B00000011); // ignore Rx/Tx 0/1
if (reportPINs[1]) outputPort(1, PINB);
if (reportPINs[2]) outputPort(2, PINC);
Firmata.begin(115200);
}
/*==============================================================================
* LOOP()
*============================================================================*/
void loop()
{
/* DIGITALREAD - as fast as possible, check for changes and output them to the
* FTDI buffer using Serial.print() */
checkDigitalInputs();
currentMillis = millis();
if (currentMillis - previousMillis > 20) {
previousMillis += 20; // run this every 20ms
/* SERIALREAD - Serial.read() uses a 128 byte circular buffer, so handle
* all serialReads at once, i.e. empty the buffer */
while (Firmata.available())
Firmata.processInput();
/* SEND FTDI WRITE BUFFER - make sure that the FTDI buffer doesn't go over
* 60 bytes. use a timer to sending an event character every 4 ms to
* trigger the buffer to dump. */
/* ANALOGREAD - right after the event character, do all of the
* analogReads(). These only need to be done every 4ms. */
for (analogPin = 0; analogPin < TOTAL_ANALOG_PINS; analogPin++) {
if ( analogInputsToReport & (1 << analogPin) ) {
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}
}

View File

@ -0,0 +1,65 @@
/*
* Firmata is a generic protocol for communicating with microcontrollers
* from software on a host computer. It is intended to work with
* any host computer software package.
*
* To download a host software package, please click on the following link
* to open the list of Firmata client libraries in your default browser.
*
* https://github.com/firmata/arduino#firmata-client-libraries
*/
/* This firmware supports as many servos as possible using the Servo library
* included in Arduino 0017
*
* This example code is in the public domain.
*/
#include <Servo.h>
#include <Firmata.h>
Servo servos[MAX_SERVOS];
byte servoPinMap[TOTAL_PINS];
byte servoCount = 0;
void analogWriteCallback(byte pin, int value)
{
if (IS_PIN_DIGITAL(pin)) {
servos[servoPinMap[pin]].write(value);
}
}
void systemResetCallback()
{
servoCount = 0;
}
void setup()
{
byte pin;
Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION);
Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
Firmata.attach(SYSTEM_RESET, systemResetCallback);
Firmata.begin(57600);
systemResetCallback();
// attach servos from first digital pin up to max number of
// servos supported for the board
for (pin = 0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_DIGITAL(pin)) {
if (servoCount < MAX_SERVOS) {
servoPinMap[pin] = servoCount;
servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin));
servoCount++;
}
}
}
}
void loop()
{
while (Firmata.available())
Firmata.processInput();
}

View File

@ -0,0 +1,46 @@
/*
* Firmata is a generic protocol for communicating with microcontrollers
* from software on a host computer. It is intended to work with
* any host computer software package.
*
* To download a host software package, please click on the following link
* to open the list of Firmata client libraries in your default browser.
*
* https://github.com/firmata/arduino#firmata-client-libraries
*/
/* Supports as many analog inputs and analog PWM outputs as possible.
*
* This example code is in the public domain.
*/
#include <Firmata.h>
byte analogPin = 0;
void analogWriteCallback(byte pin, int value)
{
if (IS_PIN_PWM(pin)) {
pinMode(PIN_TO_DIGITAL(pin), OUTPUT);
analogWrite(PIN_TO_PWM(pin), value);
}
}
void setup()
{
Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION);
Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
Firmata.begin(57600);
}
void loop()
{
while (Firmata.available()) {
Firmata.processInput();
}
// do one analogRead per loop, so if PC is sending a lot of
// analog write messages, we will only delay 1 analogRead
Firmata.sendAnalog(analogPin, analogRead(analogPin));
analogPin = analogPin + 1;
if (analogPin >= TOTAL_ANALOG_PINS) analogPin = 0;
}

View File

@ -0,0 +1,72 @@
/*
* Firmata is a generic protocol for communicating with microcontrollers
* from software on a host computer. It is intended to work with
* any host computer software package.
*
* To download a host software package, please click on the following link
* to open the list of Firmata client libraries in your default browser.
*
* https://github.com/firmata/arduino#firmata-client-libraries
*/
/* Supports as many digital inputs and outputs as possible.
*
* This example code is in the public domain.
*/
#include <Firmata.h>
byte previousPIN[TOTAL_PORTS]; // PIN means PORT for input
byte previousPORT[TOTAL_PORTS];
void outputPort(byte portNumber, byte portValue)
{
// only send the data when it changes, otherwise you get too many messages!
if (previousPIN[portNumber] != portValue) {
Firmata.sendDigitalPort(portNumber, portValue);
previousPIN[portNumber] = portValue;
}
}
void setPinModeCallback(byte pin, int mode) {
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), mode);
}
}
void digitalWriteCallback(byte port, int value)
{
byte i;
byte currentPinValue, previousPinValue;
if (port < TOTAL_PORTS && value != previousPORT[port]) {
for (i = 0; i < 8; i++) {
currentPinValue = (byte) value & (1 << i);
previousPinValue = previousPORT[port] & (1 << i);
if (currentPinValue != previousPinValue) {
digitalWrite(i + (port * 8), currentPinValue);
}
}
previousPORT[port] = value;
}
}
void setup()
{
Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION);
Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
Firmata.attach(SET_PIN_MODE, setPinModeCallback);
Firmata.begin(57600);
}
void loop()
{
byte i;
for (i = 0; i < TOTAL_PORTS; i++) {
outputPort(i, readPort(i, 0xff));
}
while (Firmata.available()) {
Firmata.processInput();
}
}

View File

@ -0,0 +1,458 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

View File

@ -0,0 +1,823 @@
/*
Firmata is a generic protocol for communicating with microcontrollers
from software on a host computer. It is intended to work with
any host computer software package.
To download a host software package, please click on the following link
to open the list of Firmata client libraries in your default browser.
https://github.com/firmata/arduino#firmata-client-libraries
Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2010-2011 Paul Stoffregen. All rights reserved.
Copyright (C) 2009 Shigeru Kobayashi. All rights reserved.
Copyright (C) 2009-2016 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
Last updated August 17th, 2017
*/
#include <Servo.h>
#include <Wire.h>
#include <Firmata.h>
#define I2C_WRITE B00000000
#define I2C_READ B00001000
#define I2C_READ_CONTINUOUSLY B00010000
#define I2C_STOP_READING B00011000
#define I2C_READ_WRITE_MODE_MASK B00011000
#define I2C_10BIT_ADDRESS_MODE_MASK B00100000
#define I2C_END_TX_MASK B01000000
#define I2C_STOP_TX 1
#define I2C_RESTART_TX 0
#define I2C_MAX_QUERIES 8
#define I2C_REGISTER_NOT_SPECIFIED -1
// the minimum interval for sampling analog input
#define MINIMUM_SAMPLING_INTERVAL 1
/*==============================================================================
* GLOBAL VARIABLES
*============================================================================*/
#ifdef FIRMATA_SERIAL_FEATURE
SerialFirmata serialFeature;
#endif
/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting
/* digital input ports */
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
/* pins configuration */
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
/* timer variables */
unsigned long currentMillis; // store the current value from millis()
unsigned long previousMillis; // for comparison with currentMillis
unsigned int samplingInterval = 19; // how often to run the main loop (in ms)
/* i2c data */
struct i2c_device_info {
byte addr;
int reg;
byte bytes;
byte stopTX;
};
/* for i2c read continuous more */
i2c_device_info query[I2C_MAX_QUERIES];
byte i2cRxData[64];
boolean isI2CEnabled = false;
signed char queryIndex = -1;
// default delay time between i2c read request and Wire.requestFrom()
unsigned int i2cReadDelayTime = 0;
Servo servos[MAX_SERVOS];
byte servoPinMap[TOTAL_PINS];
byte detachedServos[MAX_SERVOS];
byte detachedServoCount = 0;
byte servoCount = 0;
boolean isResetting = false;
// Forward declare a few functions to avoid compiler errors with older versions
// of the Arduino IDE.
void setPinModeCallback(byte, int);
void reportAnalogCallback(byte analogPin, int value);
void sysexCallback(byte, byte, byte*);
/* utility functions */
void wireWrite(byte data)
{
#if ARDUINO >= 100
Wire.write((byte)data);
#else
Wire.send(data);
#endif
}
byte wireRead(void)
{
#if ARDUINO >= 100
return Wire.read();
#else
return Wire.receive();
#endif
}
/*==============================================================================
* FUNCTIONS
*============================================================================*/
void attachServo(byte pin, int minPulse, int maxPulse)
{
if (servoCount < MAX_SERVOS) {
// reuse indexes of detached servos until all have been reallocated
if (detachedServoCount > 0) {
servoPinMap[pin] = detachedServos[detachedServoCount - 1];
if (detachedServoCount > 0) detachedServoCount--;
} else {
servoPinMap[pin] = servoCount;
servoCount++;
}
if (minPulse > 0 && maxPulse > 0) {
servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin), minPulse, maxPulse);
} else {
servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin));
}
} else {
Firmata.sendString("Max servos attached");
}
}
void detachServo(byte pin)
{
servos[servoPinMap[pin]].detach();
// if we're detaching the last servo, decrement the count
// otherwise store the index of the detached servo
if (servoPinMap[pin] == servoCount && servoCount > 0) {
servoCount--;
} else if (servoCount > 0) {
// keep track of detached servos because we want to reuse their indexes
// before incrementing the count of attached servos
detachedServoCount++;
detachedServos[detachedServoCount - 1] = servoPinMap[pin];
}
servoPinMap[pin] = 255;
}
void enableI2CPins()
{
byte i;
// is there a faster way to do this? would probaby require importing
// Arduino.h to get SCL and SDA pins
for (i = 0; i < TOTAL_PINS; i++) {
if (IS_PIN_I2C(i)) {
// mark pins as i2c so they are ignore in non i2c data requests
setPinModeCallback(i, PIN_MODE_I2C);
}
}
isI2CEnabled = true;
Wire.begin();
}
/* disable the i2c pins so they can be used for other functions */
void disableI2CPins() {
isI2CEnabled = false;
// disable read continuous mode for all devices
queryIndex = -1;
}
void readAndReportData(byte address, int theRegister, byte numBytes, byte stopTX) {
// allow I2C requests that don't require a register read
// for example, some devices using an interrupt pin to signify new data available
// do not always require the register read so upon interrupt you call Wire.requestFrom()
if (theRegister != I2C_REGISTER_NOT_SPECIFIED) {
Wire.beginTransmission(address);
wireWrite((byte)theRegister);
Wire.endTransmission(stopTX); // default = true
// do not set a value of 0
if (i2cReadDelayTime > 0) {
// delay is necessary for some devices such as WiiNunchuck
delayMicroseconds(i2cReadDelayTime);
}
} else {
theRegister = 0; // fill the register with a dummy value
}
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
// check to be sure correct number of bytes were returned by slave
if (numBytes < Wire.available()) {
Firmata.sendString("I2C: Too many bytes received");
} else if (numBytes > Wire.available()) {
Firmata.sendString("I2C: Too few bytes received");
}
i2cRxData[0] = address;
i2cRxData[1] = theRegister;
for (int i = 0; i < numBytes && Wire.available(); i++) {
i2cRxData[2 + i] = wireRead();
}
// send slave address, register and received bytes
Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
}
void outputPort(byte portNumber, byte portValue, byte forceSend)
{
// pins not configured as INPUT are cleared to zeros
portValue = portValue & portConfigInputs[portNumber];
// only send if the value is different than previously sent
if (forceSend || previousPINs[portNumber] != portValue) {
Firmata.sendDigitalPort(portNumber, portValue);
previousPINs[portNumber] = portValue;
}
}
/* -----------------------------------------------------------------------------
* check all the active digital inputs for change of state, then add any events
* to the Serial output queue using Serial.print() */
void checkDigitalInputs(void)
{
/* Using non-looping code allows constants to be given to readPort().
* The compiler will apply substantial optimizations if the inputs
* to readPort() are compile-time constants. */
if (TOTAL_PORTS > 0 && reportPINs[0]) outputPort(0, readPort(0, portConfigInputs[0]), false);
if (TOTAL_PORTS > 1 && reportPINs[1]) outputPort(1, readPort(1, portConfigInputs[1]), false);
if (TOTAL_PORTS > 2 && reportPINs[2]) outputPort(2, readPort(2, portConfigInputs[2]), false);
if (TOTAL_PORTS > 3 && reportPINs[3]) outputPort(3, readPort(3, portConfigInputs[3]), false);
if (TOTAL_PORTS > 4 && reportPINs[4]) outputPort(4, readPort(4, portConfigInputs[4]), false);
if (TOTAL_PORTS > 5 && reportPINs[5]) outputPort(5, readPort(5, portConfigInputs[5]), false);
if (TOTAL_PORTS > 6 && reportPINs[6]) outputPort(6, readPort(6, portConfigInputs[6]), false);
if (TOTAL_PORTS > 7 && reportPINs[7]) outputPort(7, readPort(7, portConfigInputs[7]), false);
if (TOTAL_PORTS > 8 && reportPINs[8]) outputPort(8, readPort(8, portConfigInputs[8]), false);
if (TOTAL_PORTS > 9 && reportPINs[9]) outputPort(9, readPort(9, portConfigInputs[9]), false);
if (TOTAL_PORTS > 10 && reportPINs[10]) outputPort(10, readPort(10, portConfigInputs[10]), false);
if (TOTAL_PORTS > 11 && reportPINs[11]) outputPort(11, readPort(11, portConfigInputs[11]), false);
if (TOTAL_PORTS > 12 && reportPINs[12]) outputPort(12, readPort(12, portConfigInputs[12]), false);
if (TOTAL_PORTS > 13 && reportPINs[13]) outputPort(13, readPort(13, portConfigInputs[13]), false);
if (TOTAL_PORTS > 14 && reportPINs[14]) outputPort(14, readPort(14, portConfigInputs[14]), false);
if (TOTAL_PORTS > 15 && reportPINs[15]) outputPort(15, readPort(15, portConfigInputs[15]), false);
}
// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
* two bit-arrays that track Digital I/O and PWM status
*/
void setPinModeCallback(byte pin, int mode)
{
if (Firmata.getPinMode(pin) == PIN_MODE_IGNORE)
return;
if (Firmata.getPinMode(pin) == PIN_MODE_I2C && isI2CEnabled && mode != PIN_MODE_I2C) {
// disable i2c so pins can be used for other functions
// the following if statements should reconfigure the pins properly
disableI2CPins();
}
if (IS_PIN_DIGITAL(pin) && mode != PIN_MODE_SERVO) {
if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
detachServo(pin);
}
}
if (IS_PIN_ANALOG(pin)) {
reportAnalogCallback(PIN_TO_ANALOG(pin), mode == PIN_MODE_ANALOG ? 1 : 0); // turn on/off reporting
}
if (IS_PIN_DIGITAL(pin)) {
if (mode == INPUT || mode == PIN_MODE_PULLUP) {
portConfigInputs[pin / 8] |= (1 << (pin & 7));
} else {
portConfigInputs[pin / 8] &= ~(1 << (pin & 7));
}
}
Firmata.setPinState(pin, 0);
switch (mode) {
case PIN_MODE_ANALOG:
if (IS_PIN_ANALOG(pin)) {
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
#if ARDUINO <= 100
// deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
}
Firmata.setPinMode(pin, PIN_MODE_ANALOG);
}
break;
case INPUT:
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
#if ARDUINO <= 100
// deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
Firmata.setPinMode(pin, INPUT);
}
break;
case PIN_MODE_PULLUP:
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT_PULLUP);
Firmata.setPinMode(pin, PIN_MODE_PULLUP);
Firmata.setPinState(pin, 1);
}
break;
case OUTPUT:
if (IS_PIN_DIGITAL(pin)) {
if (Firmata.getPinMode(pin) == PIN_MODE_PWM) {
// Disable PWM if pin mode was previously set to PWM.
digitalWrite(PIN_TO_DIGITAL(pin), LOW);
}
pinMode(PIN_TO_DIGITAL(pin), OUTPUT);
Firmata.setPinMode(pin, OUTPUT);
}
break;
case PIN_MODE_PWM:
if (IS_PIN_PWM(pin)) {
pinMode(PIN_TO_PWM(pin), OUTPUT);
analogWrite(PIN_TO_PWM(pin), 0);
Firmata.setPinMode(pin, PIN_MODE_PWM);
}
break;
case PIN_MODE_SERVO:
if (IS_PIN_DIGITAL(pin)) {
Firmata.setPinMode(pin, PIN_MODE_SERVO);
if (servoPinMap[pin] == 255 || !servos[servoPinMap[pin]].attached()) {
// pass -1 for min and max pulse values to use default values set
// by Servo library
attachServo(pin, -1, -1);
}
}
break;
case PIN_MODE_I2C:
if (IS_PIN_I2C(pin)) {
// mark the pin as i2c
// the user must call I2C_CONFIG to enable I2C for a device
Firmata.setPinMode(pin, PIN_MODE_I2C);
}
break;
case PIN_MODE_SERIAL:
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.handlePinMode(pin, PIN_MODE_SERIAL);
#endif
break;
default:
Firmata.sendString("Unknown pin mode"); // TODO: put error msgs in EEPROM
}
// TODO: save status to EEPROM here, if changed
}
/*
* Sets the value of an individual pin. Useful if you want to set a pin value but
* are not tracking the digital port state.
* Can only be used on pins configured as OUTPUT.
* Cannot be used to enable pull-ups on Digital INPUT pins.
*/
void setPinValueCallback(byte pin, int value)
{
if (pin < TOTAL_PINS && IS_PIN_DIGITAL(pin)) {
if (Firmata.getPinMode(pin) == OUTPUT) {
Firmata.setPinState(pin, value);
digitalWrite(PIN_TO_DIGITAL(pin), value);
}
}
}
void analogWriteCallback(byte pin, int value)
{
if (pin < TOTAL_PINS) {
switch (Firmata.getPinMode(pin)) {
case PIN_MODE_SERVO:
if (IS_PIN_DIGITAL(pin))
servos[servoPinMap[pin]].write(value);
Firmata.setPinState(pin, value);
break;
case PIN_MODE_PWM:
if (IS_PIN_PWM(pin))
analogWrite(PIN_TO_PWM(pin), value);
Firmata.setPinState(pin, value);
break;
}
}
}
void digitalWriteCallback(byte port, int value)
{
byte pin, lastPin, pinValue, mask = 1, pinWriteMask = 0;
if (port < TOTAL_PORTS) {
// create a mask of the pins on this port that are writable.
lastPin = port * 8 + 8;
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
for (pin = port * 8; pin < lastPin; pin++) {
// do not disturb non-digital pins (eg, Rx & Tx)
if (IS_PIN_DIGITAL(pin)) {
// do not touch pins in PWM, ANALOG, SERVO or other modes
if (Firmata.getPinMode(pin) == OUTPUT || Firmata.getPinMode(pin) == INPUT) {
pinValue = ((byte)value & mask) ? 1 : 0;
if (Firmata.getPinMode(pin) == OUTPUT) {
pinWriteMask |= mask;
} else if (Firmata.getPinMode(pin) == INPUT && pinValue == 1 && Firmata.getPinState(pin) != 1) {
// only handle INPUT here for backwards compatibility
#if ARDUINO > 100
pinMode(pin, INPUT_PULLUP);
#else
// only write to the INPUT pin to enable pullups if Arduino v1.0.0 or earlier
pinWriteMask |= mask;
#endif
}
Firmata.setPinState(pin, pinValue);
}
}
mask = mask << 1;
}
writePort(port, (byte)value, pinWriteMask);
}
}
// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
*/
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte analogPin, int value)
{
if (analogPin < TOTAL_ANALOG_PINS) {
if (value == 0) {
analogInputsToReport = analogInputsToReport & ~ (1 << analogPin);
} else {
analogInputsToReport = analogInputsToReport | (1 << analogPin);
// prevent during system reset or all analog pin values will be reported
// which may report noise for unconnected analog pins
if (!isResetting) {
// Send pin value immediately. This is helpful when connected via
// ethernet, wi-fi or bluetooth so pin states can be known upon
// reconnecting.
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}
// TODO: save status to EEPROM here, if changed
}
void reportDigitalCallback(byte port, int value)
{
if (port < TOTAL_PORTS) {
reportPINs[port] = (byte)value;
// Send port value immediately. This is helpful when connected via
// ethernet, wi-fi or bluetooth so pin states can be known upon
// reconnecting.
if (value) outputPort(port, readPort(port, portConfigInputs[port]), true);
}
// do not disable analog reporting on these 8 pins, to allow some
// pins used for digital, others analog. Instead, allow both types
// of reporting to be enabled, but check if the pin is configured
// as analog when sampling the analog inputs. Likewise, while
// scanning digital pins, portConfigInputs will mask off values from any
// pins configured as analog
}
/*==============================================================================
* SYSEX-BASED commands
*============================================================================*/
void sysexCallback(byte command, byte argc, byte *argv)
{
byte mode;
byte stopTX;
byte slaveAddress;
byte data;
int slaveRegister;
unsigned int delayTime;
switch (command) {
case I2C_REQUEST:
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
Firmata.sendString("10-bit addressing not supported");
return;
}
else {
slaveAddress = argv[0];
}
// need to invert the logic here since 0 will be default for client
// libraries that have not updated to add support for restart tx
if (argv[1] & I2C_END_TX_MASK) {
stopTX = I2C_RESTART_TX;
}
else {
stopTX = I2C_STOP_TX; // default
}
switch (mode) {
case I2C_WRITE:
Wire.beginTransmission(slaveAddress);
for (byte i = 2; i < argc; i += 2) {
data = argv[i] + (argv[i + 1] << 7);
wireWrite(data);
}
Wire.endTransmission();
delayMicroseconds(70);
break;
case I2C_READ:
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
}
else {
// a slave register is NOT specified
slaveRegister = I2C_REGISTER_NOT_SPECIFIED;
data = argv[2] + (argv[3] << 7); // bytes to read
}
readAndReportData(slaveAddress, (int)slaveRegister, data, stopTX);
break;
case I2C_READ_CONTINUOUSLY:
if ((queryIndex + 1) >= I2C_MAX_QUERIES) {
// too many queries, just ignore
Firmata.sendString("too many queries");
break;
}
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
}
else {
// a slave register is NOT specified
slaveRegister = (int)I2C_REGISTER_NOT_SPECIFIED;
data = argv[2] + (argv[3] << 7); // bytes to read
}
queryIndex++;
query[queryIndex].addr = slaveAddress;
query[queryIndex].reg = slaveRegister;
query[queryIndex].bytes = data;
query[queryIndex].stopTX = stopTX;
break;
case I2C_STOP_READING:
byte queryIndexToSkip;
// if read continuous mode is enabled for only 1 i2c device, disable
// read continuous reporting for that device
if (queryIndex <= 0) {
queryIndex = -1;
} else {
queryIndexToSkip = 0;
// if read continuous mode is enabled for multiple devices,
// determine which device to stop reading and remove it's data from
// the array, shifiting other array data to fill the space
for (byte i = 0; i < queryIndex + 1; i++) {
if (query[i].addr == slaveAddress) {
queryIndexToSkip = i;
break;
}
}
for (byte i = queryIndexToSkip; i < queryIndex + 1; i++) {
if (i < I2C_MAX_QUERIES) {
query[i].addr = query[i + 1].addr;
query[i].reg = query[i + 1].reg;
query[i].bytes = query[i + 1].bytes;
query[i].stopTX = query[i + 1].stopTX;
}
}
queryIndex--;
}
break;
default:
break;
}
break;
case I2C_CONFIG:
delayTime = (argv[0] + (argv[1] << 7));
if (argc > 1 && delayTime > 0) {
i2cReadDelayTime = delayTime;
}
if (!isI2CEnabled) {
enableI2CPins();
}
break;
case SERVO_CONFIG:
if (argc > 4) {
// these vars are here for clarity, they'll optimized away by the compiler
byte pin = argv[0];
int minPulse = argv[1] + (argv[2] << 7);
int maxPulse = argv[3] + (argv[4] << 7);
if (IS_PIN_DIGITAL(pin)) {
if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
detachServo(pin);
}
attachServo(pin, minPulse, maxPulse);
setPinModeCallback(pin, PIN_MODE_SERVO);
}
}
break;
case SAMPLING_INTERVAL:
if (argc > 1) {
samplingInterval = argv[0] + (argv[1] << 7);
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
}
} else {
//Firmata.sendString("Not enough data");
}
break;
case EXTENDED_ANALOG:
if (argc > 1) {
int val = argv[1];
if (argc > 2) val |= (argv[2] << 7);
if (argc > 3) val |= (argv[3] << 14);
analogWriteCallback(argv[0], val);
}
break;
case CAPABILITY_QUERY:
Firmata.write(START_SYSEX);
Firmata.write(CAPABILITY_RESPONSE);
for (byte pin = 0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_DIGITAL(pin)) {
Firmata.write((byte)INPUT);
Firmata.write(1);
Firmata.write((byte)PIN_MODE_PULLUP);
Firmata.write(1);
Firmata.write((byte)OUTPUT);
Firmata.write(1);
}
if (IS_PIN_ANALOG(pin)) {
Firmata.write(PIN_MODE_ANALOG);
Firmata.write(10); // 10 = 10-bit resolution
}
if (IS_PIN_PWM(pin)) {
Firmata.write(PIN_MODE_PWM);
Firmata.write(DEFAULT_PWM_RESOLUTION);
}
if (IS_PIN_DIGITAL(pin)) {
Firmata.write(PIN_MODE_SERVO);
Firmata.write(14);
}
if (IS_PIN_I2C(pin)) {
Firmata.write(PIN_MODE_I2C);
Firmata.write(1); // TODO: could assign a number to map to SCL or SDA
}
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.handleCapability(pin);
#endif
Firmata.write(127);
}
Firmata.write(END_SYSEX);
break;
case PIN_STATE_QUERY:
if (argc > 0) {
byte pin = argv[0];
Firmata.write(START_SYSEX);
Firmata.write(PIN_STATE_RESPONSE);
Firmata.write(pin);
if (pin < TOTAL_PINS) {
Firmata.write(Firmata.getPinMode(pin));
Firmata.write((byte)Firmata.getPinState(pin) & 0x7F);
if (Firmata.getPinState(pin) & 0xFF80) Firmata.write((byte)(Firmata.getPinState(pin) >> 7) & 0x7F);
if (Firmata.getPinState(pin) & 0xC000) Firmata.write((byte)(Firmata.getPinState(pin) >> 14) & 0x7F);
}
Firmata.write(END_SYSEX);
}
break;
case ANALOG_MAPPING_QUERY:
Firmata.write(START_SYSEX);
Firmata.write(ANALOG_MAPPING_RESPONSE);
for (byte pin = 0; pin < TOTAL_PINS; pin++) {
Firmata.write(IS_PIN_ANALOG(pin) ? PIN_TO_ANALOG(pin) : 127);
}
Firmata.write(END_SYSEX);
break;
case SERIAL_MESSAGE:
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.handleSysex(command, argc, argv);
#endif
break;
}
}
/*==============================================================================
* SETUP()
*============================================================================*/
void systemResetCallback()
{
isResetting = true;
// initialize a defalt state
// TODO: option to load config from EEPROM instead of default
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.reset();
#endif
if (isI2CEnabled) {
disableI2CPins();
}
for (byte i = 0; i < TOTAL_PORTS; i++) {
reportPINs[i] = false; // by default, reporting off
portConfigInputs[i] = 0; // until activated
previousPINs[i] = 0;
}
for (byte i = 0; i < TOTAL_PINS; i++) {
// pins with analog capability default to analog input
// otherwise, pins default to digital output
if (IS_PIN_ANALOG(i)) {
// turns off pullup, configures everything
setPinModeCallback(i, PIN_MODE_ANALOG);
} else if (IS_PIN_DIGITAL(i)) {
// sets the output to 0, configures portConfigInputs
setPinModeCallback(i, OUTPUT);
}
servoPinMap[i] = 255;
}
// by default, do not report any analog inputs
analogInputsToReport = 0;
detachedServoCount = 0;
servoCount = 0;
/* send digital inputs to set the initial state on the host computer,
* since once in the loop(), this firmware will only send on change */
/*
TODO: this can never execute, since no pins default to digital input
but it will be needed when/if we support EEPROM stored config
for (byte i=0; i < TOTAL_PORTS; i++) {
outputPort(i, readPort(i, portConfigInputs[i]), true);
}
*/
isResetting = false;
}
void setup()
{
Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION);
Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
Firmata.attach(SET_PIN_MODE, setPinModeCallback);
Firmata.attach(SET_DIGITAL_PIN_VALUE, setPinValueCallback);
Firmata.attach(START_SYSEX, sysexCallback);
Firmata.attach(SYSTEM_RESET, systemResetCallback);
// to use a port other than Serial, such as Serial1 on an Arduino Leonardo or Mega,
// Call begin(baud) on the alternate serial port and pass it to Firmata to begin like this:
// Serial1.begin(57600);
// Firmata.begin(Serial1);
// However do not do this if you are using SERIAL_MESSAGE
Firmata.begin(57600);
while (!Serial) {
; // wait for serial port to connect. Needed for ATmega32u4-based boards and Arduino 101
}
systemResetCallback(); // reset to default config
}
/*==============================================================================
* LOOP()
*============================================================================*/
void loop()
{
byte pin, analogPin;
/* DIGITALREAD - as fast as possible, check for changes and output them to the
* FTDI buffer using Serial.print() */
checkDigitalInputs();
/* STREAMREAD - processing incoming messagse as soon as possible, while still
* checking digital inputs. */
while (Firmata.available())
Firmata.processInput();
// TODO - ensure that Stream buffer doesn't go over 60 bytes
currentMillis = millis();
if (currentMillis - previousMillis > samplingInterval) {
previousMillis += samplingInterval;
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
for (pin = 0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_ANALOG(pin) && Firmata.getPinMode(pin) == PIN_MODE_ANALOG) {
analogPin = PIN_TO_ANALOG(pin);
if (analogInputsToReport & (1 << analogPin)) {
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}
// report i2c data for all device with read continuous mode enabled
if (queryIndex > -1) {
for (byte i = 0; i < queryIndex + 1; i++) {
readAndReportData(query[i].addr, query[i].reg, query[i].bytes, query[i].stopTX);
}
}
}
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.update();
#endif
}

View File

@ -0,0 +1,458 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

View File

@ -0,0 +1,835 @@
/*
Firmata is a generic protocol for communicating with microcontrollers
from software on a host computer. It is intended to work with
any host computer software package.
To download a host software package, please click on the following link
to open the list of Firmata client libraries in your default browser.
https://github.com/firmata/arduino#firmata-client-libraries
Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2010-2011 Paul Stoffregen. All rights reserved.
Copyright (C) 2009 Shigeru Kobayashi. All rights reserved.
Copyright (C) 2009-2016 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
Last updated April 15th, 2018
*/
#include <Servo.h>
#include <Wire.h>
#include <Firmata.h>
//#define SERIAL_DEBUG
#include "utility/firmataDebug.h"
/*
* Uncomment the following include to enable interfacing
* with Serial devices via hardware or software serial.
*/
// In order to use software serial, you will need to compile this sketch with
// Arduino IDE v1.6.6 or higher. Hardware serial should work back to Arduino 1.0.
//#include "utility/SerialFirmata.h"
// follow the instructions in bleConfig.h to configure your BLE hardware
#include "bleConfig.h"
#define I2C_WRITE 0x00 //B00000000
#define I2C_READ 0x08 //B00001000
#define I2C_READ_CONTINUOUSLY 0x10 //B00010000
#define I2C_STOP_READING 0x18 //B00011000
#define I2C_READ_WRITE_MODE_MASK 0x18 //B00011000
#define I2C_10BIT_ADDRESS_MODE_MASK 0x20 //B00100000
#define I2C_END_TX_MASK 0x40 //B01000000
#define I2C_STOP_TX 1
#define I2C_RESTART_TX 0
#define I2C_MAX_QUERIES 8
#define I2C_REGISTER_NOT_SPECIFIED -1
// the minimum interval for sampling analog input
#define MINIMUM_SAMPLING_INTERVAL 1
/*==============================================================================
* GLOBAL VARIABLES
*============================================================================*/
#ifdef FIRMATA_SERIAL_FEATURE
SerialFirmata serialFeature;
#endif
/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting
/* digital input ports */
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
/* pins configuration */
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
/* timer variables */
unsigned long currentMillis; // store the current value from millis()
unsigned long previousMillis; // for comparison with currentMillis
unsigned int samplingInterval = 19; // how often to run the main loop (in ms)
/* i2c data */
struct i2c_device_info {
byte addr;
int reg;
byte bytes;
byte stopTX;
};
/* for i2c read continuous more */
i2c_device_info query[I2C_MAX_QUERIES];
byte i2cRxData[64];
boolean isI2CEnabled = false;
signed char queryIndex = -1;
// default delay time between i2c read request and Wire.requestFrom()
unsigned int i2cReadDelayTime = 0;
Servo servos[MAX_SERVOS];
byte servoPinMap[TOTAL_PINS];
byte detachedServos[MAX_SERVOS];
byte detachedServoCount = 0;
byte servoCount = 0;
boolean isResetting = false;
// Forward declare a few functions to avoid compiler errors with older versions
// of the Arduino IDE.
void setPinModeCallback(byte, int);
void reportAnalogCallback(byte analogPin, int value);
void sysexCallback(byte, byte, byte*);
/* utility functions */
void wireWrite(byte data)
{
#if ARDUINO >= 100
Wire.write((byte)data);
#else
Wire.send(data);
#endif
}
byte wireRead(void)
{
#if ARDUINO >= 100
return Wire.read();
#else
return Wire.receive();
#endif
}
/*==============================================================================
* FUNCTIONS
*============================================================================*/
void attachServo(byte pin, int minPulse, int maxPulse)
{
if (servoCount < MAX_SERVOS) {
// reuse indexes of detached servos until all have been reallocated
if (detachedServoCount > 0) {
servoPinMap[pin] = detachedServos[detachedServoCount - 1];
if (detachedServoCount > 0) detachedServoCount--;
} else {
servoPinMap[pin] = servoCount;
servoCount++;
}
if (minPulse > 0 && maxPulse > 0) {
servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin), minPulse, maxPulse);
} else {
servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin));
}
} else {
Firmata.sendString("Max servos attached");
}
}
void detachServo(byte pin)
{
servos[servoPinMap[pin]].detach();
// if we're detaching the last servo, decrement the count
// otherwise store the index of the detached servo
if (servoPinMap[pin] == servoCount && servoCount > 0) {
servoCount--;
} else if (servoCount > 0) {
// keep track of detached servos because we want to reuse their indexes
// before incrementing the count of attached servos
detachedServoCount++;
detachedServos[detachedServoCount - 1] = servoPinMap[pin];
}
servoPinMap[pin] = 255;
}
void enableI2CPins()
{
byte i;
// is there a faster way to do this? would probaby require importing
// Arduino.h to get SCL and SDA pins
for (i = 0; i < TOTAL_PINS; i++) {
if (IS_PIN_I2C(i)) {
// mark pins as i2c so they are ignore in non i2c data requests
setPinModeCallback(i, PIN_MODE_I2C);
}
}
isI2CEnabled = true;
Wire.begin();
}
/* disable the i2c pins so they can be used for other functions */
void disableI2CPins() {
isI2CEnabled = false;
// disable read continuous mode for all devices
queryIndex = -1;
}
void readAndReportData(byte address, int theRegister, byte numBytes, byte stopTX) {
// allow I2C requests that don't require a register read
// for example, some devices using an interrupt pin to signify new data available
// do not always require the register read so upon interrupt you call Wire.requestFrom()
if (theRegister != I2C_REGISTER_NOT_SPECIFIED) {
Wire.beginTransmission(address);
wireWrite((byte)theRegister);
Wire.endTransmission(stopTX); // default = true
// do not set a value of 0
if (i2cReadDelayTime > 0) {
// delay is necessary for some devices such as WiiNunchuck
delayMicroseconds(i2cReadDelayTime);
}
} else {
theRegister = 0; // fill the register with a dummy value
}
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
// check to be sure correct number of bytes were returned by slave
if (numBytes < Wire.available()) {
Firmata.sendString("I2C: Too many bytes received");
} else if (numBytes > Wire.available()) {
Firmata.sendString("I2C: Too few bytes received");
}
i2cRxData[0] = address;
i2cRxData[1] = theRegister;
for (int i = 0; i < numBytes && Wire.available(); i++) {
i2cRxData[2 + i] = wireRead();
}
// send slave address, register and received bytes
Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
}
void outputPort(byte portNumber, byte portValue, byte forceSend)
{
// pins not configured as INPUT are cleared to zeros
portValue = portValue & portConfigInputs[portNumber];
// only send if the value is different than previously sent
if (forceSend || previousPINs[portNumber] != portValue) {
Firmata.sendDigitalPort(portNumber, portValue);
previousPINs[portNumber] = portValue;
}
}
/* -----------------------------------------------------------------------------
* check all the active digital inputs for change of state, then add any events
* to the Serial output queue using Serial.print() */
void checkDigitalInputs(void)
{
/* Using non-looping code allows constants to be given to readPort().
* The compiler will apply substantial optimizations if the inputs
* to readPort() are compile-time constants. */
if (TOTAL_PORTS > 0 && reportPINs[0]) outputPort(0, readPort(0, portConfigInputs[0]), false);
if (TOTAL_PORTS > 1 && reportPINs[1]) outputPort(1, readPort(1, portConfigInputs[1]), false);
if (TOTAL_PORTS > 2 && reportPINs[2]) outputPort(2, readPort(2, portConfigInputs[2]), false);
if (TOTAL_PORTS > 3 && reportPINs[3]) outputPort(3, readPort(3, portConfigInputs[3]), false);
if (TOTAL_PORTS > 4 && reportPINs[4]) outputPort(4, readPort(4, portConfigInputs[4]), false);
if (TOTAL_PORTS > 5 && reportPINs[5]) outputPort(5, readPort(5, portConfigInputs[5]), false);
if (TOTAL_PORTS > 6 && reportPINs[6]) outputPort(6, readPort(6, portConfigInputs[6]), false);
if (TOTAL_PORTS > 7 && reportPINs[7]) outputPort(7, readPort(7, portConfigInputs[7]), false);
if (TOTAL_PORTS > 8 && reportPINs[8]) outputPort(8, readPort(8, portConfigInputs[8]), false);
if (TOTAL_PORTS > 9 && reportPINs[9]) outputPort(9, readPort(9, portConfigInputs[9]), false);
if (TOTAL_PORTS > 10 && reportPINs[10]) outputPort(10, readPort(10, portConfigInputs[10]), false);
if (TOTAL_PORTS > 11 && reportPINs[11]) outputPort(11, readPort(11, portConfigInputs[11]), false);
if (TOTAL_PORTS > 12 && reportPINs[12]) outputPort(12, readPort(12, portConfigInputs[12]), false);
if (TOTAL_PORTS > 13 && reportPINs[13]) outputPort(13, readPort(13, portConfigInputs[13]), false);
if (TOTAL_PORTS > 14 && reportPINs[14]) outputPort(14, readPort(14, portConfigInputs[14]), false);
if (TOTAL_PORTS > 15 && reportPINs[15]) outputPort(15, readPort(15, portConfigInputs[15]), false);
}
// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
* two bit-arrays that track Digital I/O and PWM status
*/
void setPinModeCallback(byte pin, int mode)
{
if (Firmata.getPinMode(pin) == PIN_MODE_IGNORE)
return;
if (Firmata.getPinMode(pin) == PIN_MODE_I2C && isI2CEnabled && mode != PIN_MODE_I2C) {
// disable i2c so pins can be used for other functions
// the following if statements should reconfigure the pins properly
disableI2CPins();
}
if (IS_PIN_DIGITAL(pin) && mode != PIN_MODE_SERVO) {
if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
detachServo(pin);
}
}
if (IS_PIN_ANALOG(pin)) {
reportAnalogCallback(PIN_TO_ANALOG(pin), mode == PIN_MODE_ANALOG ? 1 : 0); // turn on/off reporting
}
if (IS_PIN_DIGITAL(pin)) {
if (mode == INPUT || mode == PIN_MODE_PULLUP) {
portConfigInputs[pin / 8] |= (1 << (pin & 7));
} else {
portConfigInputs[pin / 8] &= ~(1 << (pin & 7));
}
}
Firmata.setPinState(pin, 0);
switch (mode) {
case PIN_MODE_ANALOG:
if (IS_PIN_ANALOG(pin)) {
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
#if ARDUINO <= 100
// deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
}
Firmata.setPinMode(pin, PIN_MODE_ANALOG);
}
break;
case INPUT:
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
#if ARDUINO <= 100
// deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
Firmata.setPinMode(pin, INPUT);
}
break;
case PIN_MODE_PULLUP:
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT_PULLUP);
Firmata.setPinMode(pin, PIN_MODE_PULLUP);
Firmata.setPinState(pin, 1);
}
break;
case OUTPUT:
if (IS_PIN_DIGITAL(pin)) {
if (Firmata.getPinMode(pin) == PIN_MODE_PWM) {
// Disable PWM if pin mode was previously set to PWM.
digitalWrite(PIN_TO_DIGITAL(pin), LOW);
}
pinMode(PIN_TO_DIGITAL(pin), OUTPUT);
Firmata.setPinMode(pin, OUTPUT);
}
break;
case PIN_MODE_PWM:
if (IS_PIN_PWM(pin)) {
pinMode(PIN_TO_PWM(pin), OUTPUT);
analogWrite(PIN_TO_PWM(pin), 0);
Firmata.setPinMode(pin, PIN_MODE_PWM);
}
break;
case PIN_MODE_SERVO:
if (IS_PIN_DIGITAL(pin)) {
Firmata.setPinMode(pin, PIN_MODE_SERVO);
if (servoPinMap[pin] == 255 || !servos[servoPinMap[pin]].attached()) {
// pass -1 for min and max pulse values to use default values set
// by Servo library
attachServo(pin, -1, -1);
}
}
break;
case PIN_MODE_I2C:
if (IS_PIN_I2C(pin)) {
// mark the pin as i2c
// the user must call I2C_CONFIG to enable I2C for a device
Firmata.setPinMode(pin, PIN_MODE_I2C);
}
break;
case PIN_MODE_SERIAL:
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.handlePinMode(pin, PIN_MODE_SERIAL);
#endif
break;
default:
Firmata.sendString("Unknown pin mode"); // TODO: put error msgs in EEPROM
}
// TODO: save status to EEPROM here, if changed
}
/*
* Sets the value of an individual pin. Useful if you want to set a pin value but
* are not tracking the digital port state.
* Can only be used on pins configured as OUTPUT.
* Cannot be used to enable pull-ups on Digital INPUT pins.
*/
void setPinValueCallback(byte pin, int value)
{
if (pin < TOTAL_PINS && IS_PIN_DIGITAL(pin)) {
if (Firmata.getPinMode(pin) == OUTPUT) {
Firmata.setPinState(pin, value);
digitalWrite(PIN_TO_DIGITAL(pin), value);
}
}
}
void analogWriteCallback(byte pin, int value)
{
if (pin < TOTAL_PINS) {
switch (Firmata.getPinMode(pin)) {
case PIN_MODE_SERVO:
if (IS_PIN_DIGITAL(pin))
servos[servoPinMap[pin]].write(value);
Firmata.setPinState(pin, value);
break;
case PIN_MODE_PWM:
if (IS_PIN_PWM(pin))
analogWrite(PIN_TO_PWM(pin), value);
Firmata.setPinState(pin, value);
break;
}
}
}
void digitalWriteCallback(byte port, int value)
{
byte pin, lastPin, pinValue, mask = 1, pinWriteMask = 0;
if (port < TOTAL_PORTS) {
// create a mask of the pins on this port that are writable.
lastPin = port * 8 + 8;
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
for (pin = port * 8; pin < lastPin; pin++) {
// do not disturb non-digital pins (eg, Rx & Tx)
if (IS_PIN_DIGITAL(pin)) {
// do not touch pins in PWM, ANALOG, SERVO or other modes
if (Firmata.getPinMode(pin) == OUTPUT || Firmata.getPinMode(pin) == INPUT) {
pinValue = ((byte)value & mask) ? 1 : 0;
if (Firmata.getPinMode(pin) == OUTPUT) {
pinWriteMask |= mask;
} else if (Firmata.getPinMode(pin) == INPUT && pinValue == 1 && Firmata.getPinState(pin) != 1) {
// only handle INPUT here for backwards compatibility
#if ARDUINO > 100
pinMode(pin, INPUT_PULLUP);
#else
// only write to the INPUT pin to enable pullups if Arduino v1.0.0 or earlier
pinWriteMask |= mask;
#endif
}
Firmata.setPinState(pin, pinValue);
}
}
mask = mask << 1;
}
writePort(port, (byte)value, pinWriteMask);
}
}
// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
*/
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte analogPin, int value)
{
if (analogPin < TOTAL_ANALOG_PINS) {
if (value == 0) {
analogInputsToReport = analogInputsToReport & ~ (1 << analogPin);
} else {
analogInputsToReport = analogInputsToReport | (1 << analogPin);
// prevent during system reset or all analog pin values will be reported
// which may report noise for unconnected analog pins
if (!isResetting) {
// Send pin value immediately. This is helpful when connected via
// ethernet, wi-fi or bluetooth so pin states can be known upon
// reconnecting.
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}
// TODO: save status to EEPROM here, if changed
}
void reportDigitalCallback(byte port, int value)
{
if (port < TOTAL_PORTS) {
reportPINs[port] = (byte)value;
// Send port value immediately. This is helpful when connected via
// ethernet, wi-fi or bluetooth so pin states can be known upon
// reconnecting.
if (value) outputPort(port, readPort(port, portConfigInputs[port]), true);
}
// do not disable analog reporting on these 8 pins, to allow some
// pins used for digital, others analog. Instead, allow both types
// of reporting to be enabled, but check if the pin is configured
// as analog when sampling the analog inputs. Likewise, while
// scanning digital pins, portConfigInputs will mask off values from any
// pins configured as analog
}
/*==============================================================================
* SYSEX-BASED commands
*============================================================================*/
void sysexCallback(byte command, byte argc, byte *argv)
{
byte mode;
byte stopTX;
byte slaveAddress;
byte data;
int slaveRegister;
unsigned int delayTime;
switch (command) {
case I2C_REQUEST:
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
Firmata.sendString("10-bit addressing not supported");
return;
}
else {
slaveAddress = argv[0];
}
// need to invert the logic here since 0 will be default for client
// libraries that have not updated to add support for restart tx
if (argv[1] & I2C_END_TX_MASK) {
stopTX = I2C_RESTART_TX;
}
else {
stopTX = I2C_STOP_TX; // default
}
switch (mode) {
case I2C_WRITE:
Wire.beginTransmission(slaveAddress);
for (byte i = 2; i < argc; i += 2) {
data = argv[i] + (argv[i + 1] << 7);
wireWrite(data);
}
Wire.endTransmission();
delayMicroseconds(70);
break;
case I2C_READ:
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
}
else {
// a slave register is NOT specified
slaveRegister = I2C_REGISTER_NOT_SPECIFIED;
data = argv[2] + (argv[3] << 7); // bytes to read
}
readAndReportData(slaveAddress, (int)slaveRegister, data, stopTX);
break;
case I2C_READ_CONTINUOUSLY:
if ((queryIndex + 1) >= I2C_MAX_QUERIES) {
// too many queries, just ignore
Firmata.sendString("too many queries");
break;
}
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
}
else {
// a slave register is NOT specified
slaveRegister = (int)I2C_REGISTER_NOT_SPECIFIED;
data = argv[2] + (argv[3] << 7); // bytes to read
}
queryIndex++;
query[queryIndex].addr = slaveAddress;
query[queryIndex].reg = slaveRegister;
query[queryIndex].bytes = data;
query[queryIndex].stopTX = stopTX;
break;
case I2C_STOP_READING:
byte queryIndexToSkip;
// if read continuous mode is enabled for only 1 i2c device, disable
// read continuous reporting for that device
if (queryIndex <= 0) {
queryIndex = -1;
} else {
queryIndexToSkip = 0;
// if read continuous mode is enabled for multiple devices,
// determine which device to stop reading and remove it's data from
// the array, shifiting other array data to fill the space
for (byte i = 0; i < queryIndex + 1; i++) {
if (query[i].addr == slaveAddress) {
queryIndexToSkip = i;
break;
}
}
for (byte i = queryIndexToSkip; i < queryIndex + 1; i++) {
if (i < I2C_MAX_QUERIES) {
query[i].addr = query[i + 1].addr;
query[i].reg = query[i + 1].reg;
query[i].bytes = query[i + 1].bytes;
query[i].stopTX = query[i + 1].stopTX;
}
}
queryIndex--;
}
break;
default:
break;
}
break;
case I2C_CONFIG:
delayTime = (argv[0] + (argv[1] << 7));
if (argc > 1 && delayTime > 0) {
i2cReadDelayTime = delayTime;
}
if (!isI2CEnabled) {
enableI2CPins();
}
break;
case SERVO_CONFIG:
if (argc > 4) {
// these vars are here for clarity, they'll optimized away by the compiler
byte pin = argv[0];
int minPulse = argv[1] + (argv[2] << 7);
int maxPulse = argv[3] + (argv[4] << 7);
if (IS_PIN_DIGITAL(pin)) {
if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
detachServo(pin);
}
attachServo(pin, minPulse, maxPulse);
setPinModeCallback(pin, PIN_MODE_SERVO);
}
}
break;
case SAMPLING_INTERVAL:
if (argc > 1) {
samplingInterval = argv[0] + (argv[1] << 7);
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
}
} else {
//Firmata.sendString("Not enough data");
}
break;
case EXTENDED_ANALOG:
if (argc > 1) {
int val = argv[1];
if (argc > 2) val |= (argv[2] << 7);
if (argc > 3) val |= (argv[3] << 14);
analogWriteCallback(argv[0], val);
}
break;
case CAPABILITY_QUERY:
Firmata.write(START_SYSEX);
Firmata.write(CAPABILITY_RESPONSE);
for (byte pin = 0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_DIGITAL(pin)) {
Firmata.write((byte)INPUT);
Firmata.write(1);
Firmata.write((byte)PIN_MODE_PULLUP);
Firmata.write(1);
Firmata.write((byte)OUTPUT);
Firmata.write(1);
}
if (IS_PIN_ANALOG(pin)) {
Firmata.write(PIN_MODE_ANALOG);
Firmata.write(10); // 10 = 10-bit resolution
}
if (IS_PIN_PWM(pin)) {
Firmata.write(PIN_MODE_PWM);
Firmata.write(8); // 8 = 8-bit resolution
}
if (IS_PIN_DIGITAL(pin)) {
Firmata.write(PIN_MODE_SERVO);
Firmata.write(14);
}
if (IS_PIN_I2C(pin)) {
Firmata.write(PIN_MODE_I2C);
Firmata.write(1); // TODO: could assign a number to map to SCL or SDA
}
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.handleCapability(pin);
#endif
Firmata.write(127);
}
Firmata.write(END_SYSEX);
break;
case PIN_STATE_QUERY:
if (argc > 0) {
byte pin = argv[0];
Firmata.write(START_SYSEX);
Firmata.write(PIN_STATE_RESPONSE);
Firmata.write(pin);
if (pin < TOTAL_PINS) {
Firmata.write(Firmata.getPinMode(pin));
Firmata.write((byte)Firmata.getPinState(pin) & 0x7F);
if (Firmata.getPinState(pin) & 0xFF80) Firmata.write((byte)(Firmata.getPinState(pin) >> 7) & 0x7F);
if (Firmata.getPinState(pin) & 0xC000) Firmata.write((byte)(Firmata.getPinState(pin) >> 14) & 0x7F);
}
Firmata.write(END_SYSEX);
}
break;
case ANALOG_MAPPING_QUERY:
Firmata.write(START_SYSEX);
Firmata.write(ANALOG_MAPPING_RESPONSE);
for (byte pin = 0; pin < TOTAL_PINS; pin++) {
Firmata.write(IS_PIN_ANALOG(pin) ? PIN_TO_ANALOG(pin) : 127);
}
Firmata.write(END_SYSEX);
break;
case SERIAL_MESSAGE:
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.handleSysex(command, argc, argv);
#endif
break;
}
}
/*==============================================================================
* SETUP()
*============================================================================*/
void systemResetCallback()
{
isResetting = true;
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.reset();
#endif
if (isI2CEnabled) {
disableI2CPins();
}
for (byte i = 0; i < TOTAL_PORTS; i++) {
reportPINs[i] = false; // by default, reporting off
portConfigInputs[i] = 0; // until activated
previousPINs[i] = 0;
}
for (byte i = 0; i < TOTAL_PINS; i++) {
// pins with analog capability default to analog input
// otherwise, pins default to digital output
if (IS_PIN_ANALOG(i)) {
// turns off pullup, configures everything
setPinModeCallback(i, PIN_MODE_ANALOG);
} else if (IS_PIN_DIGITAL(i)) {
// sets the output to 0, configures portConfigInputs
setPinModeCallback(i, OUTPUT);
}
servoPinMap[i] = 255;
}
// by default, do not report any analog inputs
analogInputsToReport = 0;
detachedServoCount = 0;
servoCount = 0;
isResetting = false;
}
void setup()
{
DEBUG_BEGIN(9600);
Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION);
Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
Firmata.attach(SET_PIN_MODE, setPinModeCallback);
Firmata.attach(SET_DIGITAL_PIN_VALUE, setPinValueCallback);
Firmata.attach(START_SYSEX, sysexCallback);
Firmata.attach(SYSTEM_RESET, systemResetCallback);
stream.setLocalName(FIRMATA_BLE_LOCAL_NAME);
// set the BLE connection interval - this is the fastest interval you can read inputs
stream.setConnectionInterval(FIRMATA_BLE_MIN_INTERVAL, FIRMATA_BLE_MAX_INTERVAL);
// set how often the BLE TX buffer is flushed (if not full)
stream.setFlushInterval(FIRMATA_BLE_TXBUFFER_FLUSH_INTERVAL);
#ifdef IS_IGNORE_BLE_PINS
for (byte i = 0; i < TOTAL_PINS; i++) {
if (IS_IGNORE_BLE_PINS(i)) {
Firmata.setPinMode(i, PIN_MODE_IGNORE);
}
}
#endif
stream.begin();
Firmata.begin(stream);
systemResetCallback(); // reset to default config
}
/*==============================================================================
* LOOP()
*============================================================================*/
void loop()
{
byte pin, analogPin;
// do not process data if no BLE connection is established
// poll will send the TX buffer at the specified flush interval or when the buffer is full
if (!stream.poll()) return;
/* DIGITALREAD - as fast as possible, check for changes and output them to the
* Stream buffer using Stream.write() */
checkDigitalInputs();
/* STREAMREAD - processing incoming messagse as soon as possible, while still
* checking digital inputs. */
while (Firmata.available())
Firmata.processInput();
currentMillis = millis();
if (currentMillis - previousMillis > samplingInterval) {
previousMillis = currentMillis;
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
for (pin = 0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_ANALOG(pin) && Firmata.getPinMode(pin) == PIN_MODE_ANALOG) {
analogPin = PIN_TO_ANALOG(pin);
if (analogInputsToReport & (1 << analogPin)) {
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}
// report i2c data for all device with read continuous mode enabled
if (queryIndex > -1) {
for (byte i = 0; i < queryIndex + 1; i++) {
readAndReportData(query[i].addr, query[i].reg, query[i].bytes, query[i].stopTX);
}
}
}
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.update();
#endif
}

View File

@ -0,0 +1,168 @@
/*==================================================================================================
* BLE CONFIGURATION
*
* If you are using an Arduino 101, you do not need to make any changes to this file (unless you
* need a unique ble local name (see below). If you are using another supported BLE board or shield,
* follow the instructions for the specific board or shield below.
*
* Make sure you have the Intel Curie Boards package v2.0.2 or higher installed via the Arduino
* Boards Manager.
*
* Supported boards and shields:
* - Arduino 101 (recommended)
* - RedBearLab BLE Shield (v2) ** to be verified **
* - RedBearLab BLE Nano ** works with modifications **
* - Adafruit Feather M0 Bluefruit LE
*
*================================================================================================*/
// change this to a unique name per board if running StandardFirmataBLE on multiple boards
// within the same physical space
#define FIRMATA_BLE_LOCAL_NAME "FIRMATA"
/*
* Arduino 101
*
* Make sure you have the Intel Curie Boards package v2.0.2 or higher installed via the Arduino
* Boards Manager.
*
* Test script: https://gist.github.com/soundanalogous/927360b797574ed50e27
*/
#ifdef _VARIANT_ARDUINO_101_X_
// After conversion to units of 1.25ms, both values must be between
// 0x0006 (7.5ms) and 0x0c80 (4s)
#define FIRMATA_BLE_MIN_INTERVAL 8 // ( 8 * 1000) / 1250 == 0x06 -> 7.5ms
#define FIRMATA_BLE_MAX_INTERVAL 30 // (30 * 1000) / 1250 == 0x18 -> 30ms
#endif
/*
* RedBearLab BLE Shield
*
* If you are using a RedBearLab BLE shield, uncomment the define below.
* Also, change the define for BLE_RST if you have the jumper set to pin 7 rather than pin 4.
*
* You will need to use the shield with an Arduino Zero, Due, Mega, or other board with sufficient
* Flash and RAM. Arduino Uno, Leonardo and other ATmega328p and Atmega32u4 boards to not have
* enough memory to run StandardFirmataBLE.
*
* TODO: verify if this works and with which boards it works.
*
* Test script: https://gist.github.com/soundanalogous/927360b797574ed50e27
*/
//#define REDBEAR_BLE_SHIELD
#ifdef REDBEAR_BLE_SHIELD
#define BLE_REQ 9
#define BLE_RDY 8
#define BLE_RST 4 // 4 or 7 via jumper on shield
#endif
/*
* Adafruit Feather M0 Bluefruit LE
*
* If you are using an Adafruit Feather M0 Bluefruit LE, uncomment the define below.
* This configuration should also work with other Bluefruit LE boards/modules that communicate
* with the nRF51822 via SPI (e.g. Bluefruit LE SPI Friend, Bluefruit LE Shield), although
* you may need to change the values of BLE_SPI_CS, BLE_SPI_IRQ, and/or BLE_SPI_RST below.
*
* You will need to install a lightly-modified version of the Adafruit BluefruitLE nRF51
* package, available at:
* https://github.com/cstawarz/Adafruit_BluefruitLE_nRF51/archive/firmata_fixes.zip
*/
//#define BLUEFRUIT_LE_SPI
#ifdef BLUEFRUIT_LE_SPI
// Both values must be between 10ms and 4s
#define FIRMATA_BLE_MIN_INTERVAL 10 // 10ms
#define FIRMATA_BLE_MAX_INTERVAL 20 // 20ms
#define BLE_SPI_CS 8
#define BLE_SPI_IRQ 7
#define BLE_SPI_RST 4
#endif
/*
* Generic settings
*/
#if !defined(FIRMATA_BLE_MIN_INTERVAL) && !defined(FIRMATA_BLE_MAX_INTERVAL)
// These values apply to all devices using the Arduino BLEPeripheral library
// with a Nordic nRF8001 or nRF51822. Both values must be between
// 0x0006 (7.5ms) and 0x0c80 (4s).
#define FIRMATA_BLE_MIN_INTERVAL 0x0006 // 7.5ms (7.5 / 1.25)
#define FIRMATA_BLE_MAX_INTERVAL 0x0018 // 30ms (30 / 1.25)
#endif
#if !defined(FIRMATA_BLE_TXBUFFER_FLUSH_INTERVAL)
#define FIRMATA_BLE_TXBUFFER_FLUSH_INTERVAL 30 // 30ms
#endif
/*==================================================================================================
* END BLE CONFIGURATION - you should not need to change anything below this line
*================================================================================================*/
#ifdef _VARIANT_ARDUINO_101_X_
#include "utility/BLEStream.h"
BLEStream stream;
#endif
#ifdef REDBEAR_BLE_SHIELD
#include <SPI.h>
#include "utility/BLEStream.h"
BLEStream stream(BLE_REQ, BLE_RDY, BLE_RST);
#endif
#ifdef BLUEFRUIT_LE_SPI
#include "utility/BluefruitLE_SPI_Stream.h"
BluefruitLE_SPI_Stream stream(BLE_SPI_CS, BLE_SPI_IRQ, BLE_SPI_RST);
#endif
/*
* RedBearLab BLE Nano (with default switch settings)
*
* Blocked on this issue: https://github.com/RedBearLab/nRF51822-Arduino/issues/46
* Works with modifications. See comments at top of the test script referenced below.
* When the RBL nRF51822-Arduino library issue is resolved, this should work witout
* any modifications.
*
* Test script: https://gist.github.com/soundanalogous/d39bb3eb36333a0906df
*
* Note: If you have changed the solder jumpers on the Nano you may encounter issues since
* the pins are currently mapped in Firmata only for the default (factory) jumper settings.
*/
// #ifdef BLE_NANO
// #include "utility/BLEStream.h"
// BLEStream stream;
// #endif
/*
* RedBearLab Blend and Blend Micro
*
* StandardFirmataBLE requires too much Flash and RAM to run on the ATmega32u4-based Blend
* and Blend Micro boards. It may work with ConfigurableFirmata selecting only analog and/or
* digital I/O.
*/
// #if defined(BLEND_MICRO) || defined(BLEND)
// #include <SPI.h>
// #include "utility/BLEStream.h"
// #define BLE_REQ 6
// #define BLE_RDY 7
// #define BLE_RST 4
// BLEStream stream(BLE_REQ, BLE_RDY, BLE_RST);
// #endif
#if defined(BLE_REQ) && defined(BLE_RDY) && defined(BLE_RST)
#define IS_IGNORE_BLE_PINS(p) ((p) == BLE_REQ || (p) == BLE_RDY || (p) == BLE_RST)
#elif defined(BLE_SPI_CS) && defined(BLE_SPI_IRQ) && defined(BLE_SPI_RST)
#define IS_IGNORE_BLE_PINS(p) ((p) == BLE_SPI_CS || (p) == BLE_SPI_IRQ || (p) == BLE_SPI_RST)
#endif

View File

@ -0,0 +1,458 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

View File

@ -0,0 +1,802 @@
/*
Firmata is a generic protocol for communicating with microcontrollers
from software on a host computer. It is intended to work with
any host computer software package.
To download a host software package, please click on the following link
to open the list of Firmata client libraries in your default browser.
https://github.com/firmata/arduino#firmata-client-libraries
Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2010-2011 Paul Stoffregen. All rights reserved.
Copyright (C) 2009 Shigeru Kobayashi. All rights reserved.
Copyright (C) 2009-2016 Jeff Hoefs. All rights reserved.
Copyright (C) 2015 Brian Schmalz. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
Last updated August 17th, 2017
*/
#include <SoftPWMServo.h> // Gives us PWM and Servo on every pin
#include <Wire.h>
#include <Firmata.h>
#define I2C_WRITE B00000000
#define I2C_READ B00001000
#define I2C_READ_CONTINUOUSLY B00010000
#define I2C_STOP_READING B00011000
#define I2C_READ_WRITE_MODE_MASK B00011000
#define I2C_10BIT_ADDRESS_MODE_MASK B00100000
#define I2C_END_TX_MASK B01000000
#define I2C_STOP_TX 1
#define I2C_RESTART_TX 0
#define I2C_MAX_QUERIES 8
#define I2C_REGISTER_NOT_SPECIFIED -1
// the minimum interval for sampling analog input
#define MINIMUM_SAMPLING_INTERVAL 1
/*==============================================================================
* GLOBAL VARIABLES
*============================================================================*/
/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting
/* digital input ports */
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
/* pins configuration */
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
/* timer variables */
unsigned long currentMillis; // store the current value from millis()
unsigned long previousMillis; // for comparison with currentMillis
unsigned int samplingInterval = 19; // how often to run the main loop (in ms)
/* i2c data */
struct i2c_device_info {
byte addr;
int reg;
byte bytes;
byte stopTX;
};
/* for i2c read continuous more */
i2c_device_info query[I2C_MAX_QUERIES];
byte i2cRxData[64];
boolean isI2CEnabled = false;
signed char queryIndex = -1;
// default delay time between i2c read request and Wire.requestFrom()
unsigned int i2cReadDelayTime = 0;
SoftServo servos[MAX_SERVOS];
byte servoPinMap[TOTAL_PINS];
byte detachedServos[MAX_SERVOS];
byte detachedServoCount = 0;
byte servoCount = 0;
boolean isResetting = false;
// Forward declare a few functions to avoid compiler errors with older versions
// of the Arduino IDE.
void setPinModeCallback(byte, int);
void reportAnalogCallback(byte analogPin, int value);
void sysexCallback(byte, byte, byte*);
/* utility functions */
void wireWrite(byte data)
{
#if ARDUINO >= 100
Wire.write((byte)data);
#else
Wire.send(data);
#endif
}
byte wireRead(void)
{
#if ARDUINO >= 100
return Wire.read();
#else
return Wire.receive();
#endif
}
/*==============================================================================
* FUNCTIONS
*============================================================================*/
void attachServo(byte pin, int minPulse, int maxPulse)
{
if (servoCount < MAX_SERVOS) {
// reuse indexes of detached servos until all have been reallocated
if (detachedServoCount > 0) {
servoPinMap[pin] = detachedServos[detachedServoCount - 1];
if (detachedServoCount > 0) detachedServoCount--;
} else {
servoPinMap[pin] = servoCount;
servoCount++;
}
if (minPulse > 0 && maxPulse > 0) {
servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin), minPulse, maxPulse);
} else {
servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin));
}
} else {
Firmata.sendString("Max servos attached");
}
}
void detachServo(byte pin)
{
servos[servoPinMap[pin]].detach();
// if we're detaching the last servo, decrement the count
// otherwise store the index of the detached servo
if (servoPinMap[pin] == servoCount && servoCount > 0) {
servoCount--;
} else if (servoCount > 0) {
// keep track of detached servos because we want to reuse their indexes
// before incrementing the count of attached servos
detachedServoCount++;
detachedServos[detachedServoCount - 1] = servoPinMap[pin];
}
servoPinMap[pin] = 255;
}
void enableI2CPins()
{
byte i;
// is there a faster way to do this? would probaby require importing
// Arduino.h to get SCL and SDA pins
for (i = 0; i < TOTAL_PINS; i++) {
if (IS_PIN_I2C(i)) {
// mark pins as i2c so they are ignore in non i2c data requests
setPinModeCallback(i, PIN_MODE_I2C);
}
}
isI2CEnabled = true;
Wire.begin();
}
/* disable the i2c pins so they can be used for other functions */
void disableI2CPins() {
isI2CEnabled = false;
// disable read continuous mode for all devices
queryIndex = -1;
}
void readAndReportData(byte address, int theRegister, byte numBytes, byte stopTX) {
// allow I2C requests that don't require a register read
// for example, some devices using an interrupt pin to signify new data available
// do not always require the register read so upon interrupt you call Wire.requestFrom()
if (theRegister != I2C_REGISTER_NOT_SPECIFIED) {
Wire.beginTransmission(address);
wireWrite((byte)theRegister);
Wire.endTransmission(stopTX); // default = true
// do not set a value of 0
if (i2cReadDelayTime > 0) {
// delay is necessary for some devices such as WiiNunchuck
delayMicroseconds(i2cReadDelayTime);
}
} else {
theRegister = 0; // fill the register with a dummy value
}
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
// check to be sure correct number of bytes were returned by slave
if (numBytes < Wire.available()) {
Firmata.sendString("I2C: Too many bytes received");
} else if (numBytes > Wire.available()) {
Firmata.sendString("I2C: Too few bytes received");
}
i2cRxData[0] = address;
i2cRxData[1] = theRegister;
for (int i = 0; i < numBytes && Wire.available(); i++) {
i2cRxData[2 + i] = wireRead();
}
// send slave address, register and received bytes
Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
}
void outputPort(byte portNumber, byte portValue, byte forceSend)
{
// pins not configured as INPUT are cleared to zeros
portValue = portValue & portConfigInputs[portNumber];
// only send if the value is different than previously sent
if (forceSend || previousPINs[portNumber] != portValue) {
Firmata.sendDigitalPort(portNumber, portValue);
previousPINs[portNumber] = portValue;
}
}
/* -----------------------------------------------------------------------------
* check all the active digital inputs for change of state, then add any events
* to the Serial output queue using Serial.print() */
void checkDigitalInputs(void)
{
/* Using non-looping code allows constants to be given to readPort().
* The compiler will apply substantial optimizations if the inputs
* to readPort() are compile-time constants. */
if (TOTAL_PORTS > 0 && reportPINs[0]) outputPort(0, readPort(0, portConfigInputs[0]), false);
if (TOTAL_PORTS > 1 && reportPINs[1]) outputPort(1, readPort(1, portConfigInputs[1]), false);
if (TOTAL_PORTS > 2 && reportPINs[2]) outputPort(2, readPort(2, portConfigInputs[2]), false);
if (TOTAL_PORTS > 3 && reportPINs[3]) outputPort(3, readPort(3, portConfigInputs[3]), false);
if (TOTAL_PORTS > 4 && reportPINs[4]) outputPort(4, readPort(4, portConfigInputs[4]), false);
if (TOTAL_PORTS > 5 && reportPINs[5]) outputPort(5, readPort(5, portConfigInputs[5]), false);
if (TOTAL_PORTS > 6 && reportPINs[6]) outputPort(6, readPort(6, portConfigInputs[6]), false);
if (TOTAL_PORTS > 7 && reportPINs[7]) outputPort(7, readPort(7, portConfigInputs[7]), false);
if (TOTAL_PORTS > 8 && reportPINs[8]) outputPort(8, readPort(8, portConfigInputs[8]), false);
if (TOTAL_PORTS > 9 && reportPINs[9]) outputPort(9, readPort(9, portConfigInputs[9]), false);
if (TOTAL_PORTS > 10 && reportPINs[10]) outputPort(10, readPort(10, portConfigInputs[10]), false);
if (TOTAL_PORTS > 11 && reportPINs[11]) outputPort(11, readPort(11, portConfigInputs[11]), false);
if (TOTAL_PORTS > 12 && reportPINs[12]) outputPort(12, readPort(12, portConfigInputs[12]), false);
if (TOTAL_PORTS > 13 && reportPINs[13]) outputPort(13, readPort(13, portConfigInputs[13]), false);
if (TOTAL_PORTS > 14 && reportPINs[14]) outputPort(14, readPort(14, portConfigInputs[14]), false);
if (TOTAL_PORTS > 15 && reportPINs[15]) outputPort(15, readPort(15, portConfigInputs[15]), false);
}
// -----------------------------------------------------------------------------
/* Sets a pin that is in Servo mode to a particular output value
* (i.e. pulse width). Different boards may have different ways of
* setting servo values, so putting it in a function keeps things cleaner.
*/
void servoWrite(byte pin, int value)
{
SoftPWMServoPWMWrite(PIN_TO_PWM(pin), value);
}
// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
* two bit-arrays that track Digital I/O and PWM status
*/
void setPinModeCallback(byte pin, int mode)
{
if (Firmata.getPinMode(pin) == PIN_MODE_IGNORE)
return;
if (Firmata.getPinMode(pin) == PIN_MODE_I2C && isI2CEnabled && mode != PIN_MODE_I2C) {
// disable i2c so pins can be used for other functions
// the following if statements should reconfigure the pins properly
disableI2CPins();
}
if (IS_PIN_DIGITAL(pin) && mode != PIN_MODE_SERVO) {
if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
detachServo(pin);
}
}
if (IS_PIN_ANALOG(pin)) {
reportAnalogCallback(PIN_TO_ANALOG(pin), mode == PIN_MODE_ANALOG ? 1 : 0); // turn on/off reporting
}
if (IS_PIN_DIGITAL(pin)) {
if (mode == INPUT || mode == PIN_MODE_PULLUP) {
portConfigInputs[pin / 8] |= (1 << (pin & 7));
} else {
portConfigInputs[pin / 8] &= ~(1 << (pin & 7));
}
}
Firmata.setPinState(pin, 0);
switch (mode) {
case PIN_MODE_ANALOG:
if (IS_PIN_ANALOG(pin)) {
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
#if ARDUINO <= 100
// deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
}
Firmata.setPinMode(pin, PIN_MODE_ANALOG);
}
break;
case INPUT:
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
#if ARDUINO <= 100
// deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
Firmata.setPinMode(pin, INPUT);
}
break;
case PIN_MODE_PULLUP:
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT_PULLUP);
Firmata.setPinMode(pin, PIN_MODE_PULLUP);
Firmata.setPinState(pin, 1);
}
break;
case OUTPUT:
if (IS_PIN_DIGITAL(pin)) {
if (Firmata.getPinMode(pin) == PIN_MODE_PWM) {
// Disable PWM if pin mode was previously set to PWM.
digitalWrite(PIN_TO_DIGITAL(pin), LOW);
}
pinMode(PIN_TO_DIGITAL(pin), OUTPUT);
Firmata.setPinMode(pin, OUTPUT);
}
break;
case PIN_MODE_PWM:
if (IS_PIN_PWM(pin)) {
pinMode(PIN_TO_PWM(pin), OUTPUT);
servoWrite(PIN_TO_PWM(pin), 0);
Firmata.setPinMode(pin, PIN_MODE_PWM);
}
break;
case PIN_MODE_SERVO:
if (IS_PIN_DIGITAL(pin)) {
Firmata.setPinMode(pin, PIN_MODE_SERVO);
if (servoPinMap[pin] == 255 || !servos[servoPinMap[pin]].attached()) {
// pass -1 for min and max pulse values to use default values set
// by Servo library
attachServo(pin, -1, -1);
}
}
break;
case PIN_MODE_I2C:
if (IS_PIN_I2C(pin)) {
// mark the pin as i2c
// the user must call I2C_CONFIG to enable I2C for a device
Firmata.setPinMode(pin, PIN_MODE_I2C);
}
break;
default:
Firmata.sendString("Unknown pin mode"); // TODO: put error msgs in EEPROM
}
// TODO: save status to EEPROM here, if changed
}
/*
* Sets the value of an individual pin. Useful if you want to set a pin value but
* are not tracking the digital port state.
* Can only be used on pins configured as OUTPUT.
* Cannot be used to enable pull-ups on Digital INPUT pins.
*/
void setPinValueCallback(byte pin, int value)
{
if (pin < TOTAL_PINS && IS_PIN_DIGITAL(pin)) {
if (Firmata.getPinMode(pin) == OUTPUT) {
Firmata.setPinState(pin, value);
digitalWrite(PIN_TO_DIGITAL(pin), value);
}
}
}
void analogWriteCallback(byte pin, int value)
{
if (pin < TOTAL_PINS) {
switch (Firmata.getPinMode(pin)) {
case PIN_MODE_SERVO:
if (IS_PIN_DIGITAL(pin))
servos[servoPinMap[pin]].write(value);
Firmata.setPinState(pin, value);
break;
case PIN_MODE_PWM:
if (IS_PIN_PWM(pin))
servoWrite(PIN_TO_PWM(pin), value);
Firmata.setPinState(pin, value);
break;
}
}
}
void digitalWriteCallback(byte port, int value)
{
byte pin, lastPin, pinValue, mask = 1, pinWriteMask = 0;
if (port < TOTAL_PORTS) {
// create a mask of the pins on this port that are writable.
lastPin = port * 8 + 8;
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
for (pin = port * 8; pin < lastPin; pin++) {
// do not disturb non-digital pins (eg, Rx & Tx)
if (IS_PIN_DIGITAL(pin)) {
// do not touch pins in PWM, ANALOG, SERVO or other modes
if (Firmata.getPinMode(pin) == OUTPUT || Firmata.getPinMode(pin) == INPUT) {
pinValue = ((byte)value & mask) ? 1 : 0;
if (Firmata.getPinMode(pin) == OUTPUT) {
pinWriteMask |= mask;
} else if (Firmata.getPinMode(pin) == INPUT && pinValue == 1 && Firmata.getPinState(pin) != 1) {
// only handle INPUT here for backwards compatibility
#if ARDUINO > 100
pinMode(pin, INPUT_PULLUP);
#else
// only write to the INPUT pin to enable pullups if Arduino v1.0.0 or earlier
pinWriteMask |= mask;
#endif
}
Firmata.setPinState(pin, pinValue);
}
}
mask = mask << 1;
}
writePort(port, (byte)value, pinWriteMask);
}
}
// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
*/
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte analogPin, int value)
{
if (analogPin < TOTAL_ANALOG_PINS) {
if (value == 0) {
analogInputsToReport = analogInputsToReport & ~ (1 << analogPin);
} else {
analogInputsToReport = analogInputsToReport | (1 << analogPin);
// prevent during system reset or all analog pin values will be reported
// which may report noise for unconnected analog pins
if (!isResetting) {
// Send pin value immediately. This is helpful when connected via
// ethernet, wi-fi or bluetooth so pin states can be known upon
// reconnecting.
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}
// TODO: save status to EEPROM here, if changed
}
void reportDigitalCallback(byte port, int value)
{
if (port < TOTAL_PORTS) {
reportPINs[port] = (byte)value;
// Send port value immediately. This is helpful when connected via
// ethernet, wi-fi or bluetooth so pin states can be known upon
// reconnecting.
if (value) outputPort(port, readPort(port, portConfigInputs[port]), true);
}
// do not disable analog reporting on these 8 pins, to allow some
// pins used for digital, others analog. Instead, allow both types
// of reporting to be enabled, but check if the pin is configured
// as analog when sampling the analog inputs. Likewise, while
// scanning digital pins, portConfigInputs will mask off values from any
// pins configured as analog
}
/*==============================================================================
* SYSEX-BASED commands
*============================================================================*/
void sysexCallback(byte command, byte argc, byte *argv)
{
byte mode;
byte stopTX;
byte slaveAddress;
byte data;
int slaveRegister;
unsigned int delayTime;
switch (command) {
case I2C_REQUEST:
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
Firmata.sendString("10-bit addressing not supported");
return;
}
else {
slaveAddress = argv[0];
}
// need to invert the logic here since 0 will be default for client
// libraries that have not updated to add support for restart tx
if (argv[1] & I2C_END_TX_MASK) {
stopTX = I2C_RESTART_TX;
}
else {
stopTX = I2C_STOP_TX; // default
}
switch (mode) {
case I2C_WRITE:
Wire.beginTransmission(slaveAddress);
for (byte i = 2; i < argc; i += 2) {
data = argv[i] + (argv[i + 1] << 7);
wireWrite(data);
}
Wire.endTransmission();
delayMicroseconds(70);
break;
case I2C_READ:
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
}
else {
// a slave register is NOT specified
slaveRegister = I2C_REGISTER_NOT_SPECIFIED;
data = argv[2] + (argv[3] << 7); // bytes to read
}
readAndReportData(slaveAddress, (int)slaveRegister, data, stopTX);
break;
case I2C_READ_CONTINUOUSLY:
if ((queryIndex + 1) >= I2C_MAX_QUERIES) {
// too many queries, just ignore
Firmata.sendString("too many queries");
break;
}
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
}
else {
// a slave register is NOT specified
slaveRegister = (int)I2C_REGISTER_NOT_SPECIFIED;
data = argv[2] + (argv[3] << 7); // bytes to read
}
queryIndex++;
query[queryIndex].addr = slaveAddress;
query[queryIndex].reg = slaveRegister;
query[queryIndex].bytes = data;
query[queryIndex].stopTX = stopTX;
break;
case I2C_STOP_READING:
byte queryIndexToSkip;
// if read continuous mode is enabled for only 1 i2c device, disable
// read continuous reporting for that device
if (queryIndex <= 0) {
queryIndex = -1;
} else {
queryIndexToSkip = 0;
// if read continuous mode is enabled for multiple devices,
// determine which device to stop reading and remove it's data from
// the array, shifiting other array data to fill the space
for (byte i = 0; i < queryIndex + 1; i++) {
if (query[i].addr == slaveAddress) {
queryIndexToSkip = i;
break;
}
}
for (byte i = queryIndexToSkip; i < queryIndex + 1; i++) {
if (i < I2C_MAX_QUERIES) {
query[i].addr = query[i + 1].addr;
query[i].reg = query[i + 1].reg;
query[i].bytes = query[i + 1].bytes;
query[i].stopTX = query[i + 1].stopTX;
}
}
queryIndex--;
}
break;
default:
break;
}
break;
case I2C_CONFIG:
delayTime = (argv[0] + (argv[1] << 7));
if (argc > 1 && delayTime > 0) {
i2cReadDelayTime = delayTime;
}
if (!isI2CEnabled) {
enableI2CPins();
}
break;
case SERVO_CONFIG:
if (argc > 4) {
// these vars are here for clarity, they'll optimized away by the compiler
byte pin = argv[0];
int minPulse = argv[1] + (argv[2] << 7);
int maxPulse = argv[3] + (argv[4] << 7);
if (IS_PIN_DIGITAL(pin)) {
if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
detachServo(pin);
}
attachServo(pin, minPulse, maxPulse);
setPinModeCallback(pin, PIN_MODE_SERVO);
}
}
break;
case SAMPLING_INTERVAL:
if (argc > 1) {
samplingInterval = argv[0] + (argv[1] << 7);
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
}
} else {
//Firmata.sendString("Not enough data");
}
break;
case EXTENDED_ANALOG:
if (argc > 1) {
int val = argv[1];
if (argc > 2) val |= (argv[2] << 7);
if (argc > 3) val |= (argv[3] << 14);
analogWriteCallback(argv[0], val);
}
break;
case CAPABILITY_QUERY:
Firmata.write(START_SYSEX);
Firmata.write(CAPABILITY_RESPONSE);
for (byte pin = 0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_DIGITAL(pin)) {
Firmata.write((byte)INPUT);
Firmata.write(1);
Firmata.write((byte)PIN_MODE_PULLUP);
Firmata.write(1);
Firmata.write((byte)OUTPUT);
Firmata.write(1);
}
if (IS_PIN_ANALOG(pin)) {
Firmata.write(PIN_MODE_ANALOG);
Firmata.write(10); // 10 = 10-bit resolution
}
if (IS_PIN_PWM(pin)) {
Firmata.write(PIN_MODE_PWM);
Firmata.write(DEFAULT_PWM_RESOLUTION);
}
if (IS_PIN_DIGITAL(pin)) {
Firmata.write(PIN_MODE_SERVO);
Firmata.write(14);
}
if (IS_PIN_I2C(pin)) {
Firmata.write(PIN_MODE_I2C);
Firmata.write(1); // TODO: could assign a number to map to SCL or SDA
}
Firmata.write(127);
}
Firmata.write(END_SYSEX);
break;
case PIN_STATE_QUERY:
if (argc > 0) {
byte pin = argv[0];
Firmata.write(START_SYSEX);
Firmata.write(PIN_STATE_RESPONSE);
Firmata.write(pin);
if (pin < TOTAL_PINS) {
Firmata.write(Firmata.getPinMode(pin));
Firmata.write((byte)Firmata.getPinState(pin) & 0x7F);
if (Firmata.getPinState(pin) & 0xFF80) Firmata.write((byte)(Firmata.getPinState(pin) >> 7) & 0x7F);
if (Firmata.getPinState(pin) & 0xC000) Firmata.write((byte)(Firmata.getPinState(pin) >> 14) & 0x7F);
}
Firmata.write(END_SYSEX);
}
break;
case ANALOG_MAPPING_QUERY:
Firmata.write(START_SYSEX);
Firmata.write(ANALOG_MAPPING_RESPONSE);
for (byte pin = 0; pin < TOTAL_PINS; pin++) {
Firmata.write(IS_PIN_ANALOG(pin) ? PIN_TO_ANALOG(pin) : 127);
}
Firmata.write(END_SYSEX);
break;
}
}
/*==============================================================================
* SETUP()
*============================================================================*/
void systemResetCallback()
{
isResetting = true;
// initialize a defalt state
// TODO: option to load config from EEPROM instead of default
if (isI2CEnabled) {
disableI2CPins();
}
for (byte i = 0; i < TOTAL_PORTS; i++) {
reportPINs[i] = false; // by default, reporting off
portConfigInputs[i] = 0; // until activated
previousPINs[i] = 0;
}
for (byte i = 0; i < TOTAL_PINS; i++) {
// pins with analog capability default to analog input
// otherwise, pins default to digital output
if (IS_PIN_ANALOG(i)) {
// turns off pullup, configures everything
setPinModeCallback(i, PIN_MODE_ANALOG);
} else if (IS_PIN_DIGITAL(i)) {
// sets the output to 0, configures portConfigInputs
setPinModeCallback(i, OUTPUT);
}
servoPinMap[i] = 255;
}
// by default, do not report any analog inputs
analogInputsToReport = 0;
detachedServoCount = 0;
servoCount = 0;
/* send digital inputs to set the initial state on the host computer,
* since once in the loop(), this firmware will only send on change */
/*
TODO: this can never execute, since no pins default to digital input
but it will be needed when/if we support EEPROM stored config
for (byte i=0; i < TOTAL_PORTS; i++) {
outputPort(i, readPort(i, portConfigInputs[i]), true);
}
*/
isResetting = false;
}
void setup()
{
Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION);
Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
Firmata.attach(SET_PIN_MODE, setPinModeCallback);
Firmata.attach(SET_DIGITAL_PIN_VALUE, setPinValueCallback);
Firmata.attach(START_SYSEX, sysexCallback);
Firmata.attach(SYSTEM_RESET, systemResetCallback);
/* For chipKIT Pi board, we need to use Serial1. All others just use Serial. */
#if defined(_BOARD_CHIPKIT_PI_)
Serial1.begin(57600);
Firmata.begin(Serial1);
#else
Firmata.begin(57600);
#endif
systemResetCallback(); // reset to default config
}
/*==============================================================================
* LOOP()
*============================================================================*/
void loop()
{
byte pin, analogPin;
/* DIGITALREAD - as fast as possible, check for changes and output them to the
* FTDI buffer using Serial.print() */
checkDigitalInputs();
/* STREAMREAD - processing incoming messagse as soon as possible, while still
* checking digital inputs. */
while (Firmata.available())
Firmata.processInput();
// TODO - ensure that Stream buffer doesn't go over 60 bytes
currentMillis = millis();
if (currentMillis - previousMillis > samplingInterval) {
previousMillis += samplingInterval;
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
for (pin = 0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_ANALOG(pin) && Firmata.getPinMode(pin) == PIN_MODE_ANALOG) {
analogPin = PIN_TO_ANALOG(pin);
if (analogInputsToReport & (1 << analogPin)) {
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}
// report i2c data for all device with read continuous mode enabled
if (queryIndex > -1) {
for (byte i = 0; i < queryIndex + 1; i++) {
readAndReportData(query[i].addr, query[i].reg, query[i].bytes, query[i].stopTX);
}
}
}
}

View File

@ -0,0 +1,458 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

View File

@ -0,0 +1,969 @@
/*
Firmata is a generic protocol for communicating with microcontrollers
from software on a host computer. It is intended to work with
any host computer software package.
To download a host software package, please click on the following link
to open the list of Firmata client libraries in your default browser.
https://github.com/firmata/arduino#firmata-client-libraries
Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2010-2011 Paul Stoffregen. All rights reserved.
Copyright (C) 2009 Shigeru Kobayashi. All rights reserved.
Copyright (C) 2009-2017 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
Last updated August 17th, 2017
*/
/*
README
StandardFirmataEthernet is a TCP client/server implementation. You will need a Firmata client library
with a network transport that can act as a TCP server or client in order to establish a connection between
StandardFirmataEthernet and the Firmata client application.
To use StandardFirmataEthernet you will need to have one of the following
boards or shields:
- Arduino Ethernet shield (or clone)
- Arduino Ethernet board (or clone)
- Arduino Yun
Follow the instructions in the ethernetConfig.h file (ethernetConfig.h tab in Arduino IDE) to
configure your particular hardware.
NOTE: If you are using an Arduino Ethernet shield you cannot use the following pins on
the following boards. Firmata will ignore any requests to use these pins:
- Arduino Uno or other ATMega328 boards: (D4, D10, D11, D12, D13)
- Arduino Mega: (D4, D10, D50, D51, D52, D53)
- Arduino Leonardo: (D4, D10)
- Arduino Due: (D4, D10)
- Arduino Zero: (D4, D10)
If you are using an ArduinoEthernet board, the following pins cannot be used (same as Uno):
- D4, D10, D11, D12, D13
*/
#include <Servo.h>
#include <Wire.h>
#include <Firmata.h>
/*
* Uncomment the #define SERIAL_DEBUG line below to receive serial output messages relating to your
* connection that may help in the event of connection issues. If defined, some boards may not begin
* executing this sketch until the Serial console is opened.
*/
//#define SERIAL_DEBUG
#include "utility/firmataDebug.h"
// follow the instructions in ethernetConfig.h to configure your particular hardware
#include "ethernetConfig.h"
#include "utility/EthernetClientStream.h"
#include "utility/EthernetServerStream.h"
/*
* Uncomment the following include to enable interfacing with Serial devices via hardware or
* software serial.
*
* DO NOT uncomment if you are running StandardFirmataEthernet on an Arduino Leonardo,
* Arduino Micro or other ATMega32u4-based board or you will not have enough Flash and RAM
* remaining to reliably run Firmata. Arduino Yun is okay because it doesn't import the Ethernet
* libraries.
*/
// In order to use software serial, you will need to compile this sketch with
// Arduino IDE v1.6.6 or higher. Hardware serial should work back to Arduino 1.0.
//#include "utility/SerialFirmata.h"
#define I2C_WRITE B00000000
#define I2C_READ B00001000
#define I2C_READ_CONTINUOUSLY B00010000
#define I2C_STOP_READING B00011000
#define I2C_READ_WRITE_MODE_MASK B00011000
#define I2C_10BIT_ADDRESS_MODE_MASK B00100000
#define I2C_END_TX_MASK B01000000
#define I2C_STOP_TX 1
#define I2C_RESTART_TX 0
#define I2C_MAX_QUERIES 8
#define I2C_REGISTER_NOT_SPECIFIED -1
// the minimum interval for sampling analog input
#define MINIMUM_SAMPLING_INTERVAL 1
/*==============================================================================
* GLOBAL VARIABLES
*============================================================================*/
#if defined remote_ip && !defined remote_host
#ifdef local_ip
EthernetClientStream stream(client, local_ip, remote_ip, NULL, network_port);
#else
EthernetClientStream stream(client, IPAddress(0, 0, 0, 0), remote_ip, NULL, network_port);
#endif
#endif
#if !defined remote_ip && defined remote_host
#ifdef local_ip
EthernetClientStream stream(client, local_ip, IPAddress(0, 0, 0, 0), remote_host, network_port );
#else
EthernetClientStream stream(client, IPAddress(0, 0, 0, 0), IPAddress(0, 0, 0, 0), remote_host, network_port);
#endif
#endif
#if !defined remote_ip && !defined remote_host
#ifdef local_ip
EthernetServerStream stream(local_ip, network_port);
#else
EthernetServerStream stream(IPAddress(0, 0, 0, 0), network_port);
#endif
#endif
#ifdef FIRMATA_SERIAL_FEATURE
SerialFirmata serialFeature;
#endif
/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting
/* digital input ports */
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
/* pins configuration */
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
/* timer variables */
unsigned long currentMillis; // store the current value from millis()
unsigned long previousMillis; // for comparison with currentMillis
unsigned int samplingInterval = 19; // how often to sample analog inputs (in ms)
/* i2c data */
struct i2c_device_info {
byte addr;
int reg;
byte bytes;
byte stopTX;
};
/* for i2c read continuous mode */
i2c_device_info query[I2C_MAX_QUERIES];
byte i2cRxData[64];
boolean isI2CEnabled = false;
signed char queryIndex = -1;
// default delay time between i2c read request and Wire.requestFrom()
unsigned int i2cReadDelayTime = 0;
Servo servos[MAX_SERVOS];
byte servoPinMap[TOTAL_PINS];
byte detachedServos[MAX_SERVOS];
byte detachedServoCount = 0;
byte servoCount = 0;
boolean isResetting = false;
// Forward declare a few functions to avoid compiler errors with older versions
// of the Arduino IDE.
void setPinModeCallback(byte, int);
void reportAnalogCallback(byte analogPin, int value);
void sysexCallback(byte, byte, byte*);
/* utility functions */
void wireWrite(byte data)
{
#if ARDUINO >= 100
Wire.write((byte)data);
#else
Wire.send(data);
#endif
}
byte wireRead(void)
{
#if ARDUINO >= 100
return Wire.read();
#else
return Wire.receive();
#endif
}
/*==============================================================================
* FUNCTIONS
*============================================================================*/
void attachServo(byte pin, int minPulse, int maxPulse)
{
if (servoCount < MAX_SERVOS) {
// reuse indexes of detached servos until all have been reallocated
if (detachedServoCount > 0) {
servoPinMap[pin] = detachedServos[detachedServoCount - 1];
if (detachedServoCount > 0) detachedServoCount--;
} else {
servoPinMap[pin] = servoCount;
servoCount++;
}
if (minPulse > 0 && maxPulse > 0) {
servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin), minPulse, maxPulse);
} else {
servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin));
}
} else {
Firmata.sendString("Max servos attached");
}
}
void detachServo(byte pin)
{
servos[servoPinMap[pin]].detach();
// if we're detaching the last servo, decrement the count
// otherwise store the index of the detached servo
if (servoPinMap[pin] == servoCount && servoCount > 0) {
servoCount--;
} else if (servoCount > 0) {
// keep track of detached servos because we want to reuse their indexes
// before incrementing the count of attached servos
detachedServoCount++;
detachedServos[detachedServoCount - 1] = servoPinMap[pin];
}
servoPinMap[pin] = 255;
}
void enableI2CPins()
{
byte i;
// is there a faster way to do this? would probaby require importing
// Arduino.h to get SCL and SDA pins
for (i = 0; i < TOTAL_PINS; i++) {
if (IS_PIN_I2C(i)) {
// mark pins as i2c so they are ignore in non i2c data requests
setPinModeCallback(i, PIN_MODE_I2C);
}
}
isI2CEnabled = true;
Wire.begin();
}
/* disable the i2c pins so they can be used for other functions */
void disableI2CPins() {
isI2CEnabled = false;
// disable read continuous mode for all devices
queryIndex = -1;
}
void readAndReportData(byte address, int theRegister, byte numBytes, byte stopTX) {
// allow I2C requests that don't require a register read
// for example, some devices using an interrupt pin to signify new data available
// do not always require the register read so upon interrupt you call Wire.requestFrom()
if (theRegister != I2C_REGISTER_NOT_SPECIFIED) {
Wire.beginTransmission(address);
wireWrite((byte)theRegister);
Wire.endTransmission(stopTX); // default = true
// do not set a value of 0
if (i2cReadDelayTime > 0) {
// delay is necessary for some devices such as WiiNunchuck
delayMicroseconds(i2cReadDelayTime);
}
} else {
theRegister = 0; // fill the register with a dummy value
}
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
// check to be sure correct number of bytes were returned by slave
if (numBytes < Wire.available()) {
Firmata.sendString("I2C: Too many bytes received");
} else if (numBytes > Wire.available()) {
Firmata.sendString("I2C: Too few bytes received");
}
i2cRxData[0] = address;
i2cRxData[1] = theRegister;
for (int i = 0; i < numBytes && Wire.available(); i++) {
i2cRxData[2 + i] = wireRead();
}
// send slave address, register and received bytes
Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
}
void outputPort(byte portNumber, byte portValue, byte forceSend)
{
// pins not configured as INPUT are cleared to zeros
portValue = portValue & portConfigInputs[portNumber];
// only send if the value is different than previously sent
if (forceSend || previousPINs[portNumber] != portValue) {
Firmata.sendDigitalPort(portNumber, portValue);
previousPINs[portNumber] = portValue;
}
}
/* -----------------------------------------------------------------------------
* check all the active digital inputs for change of state, then add any events
* to the Stream output queue using Stream.write() */
void checkDigitalInputs(void)
{
/* Using non-looping code allows constants to be given to readPort().
* The compiler will apply substantial optimizations if the inputs
* to readPort() are compile-time constants. */
if (TOTAL_PORTS > 0 && reportPINs[0]) outputPort(0, readPort(0, portConfigInputs[0]), false);
if (TOTAL_PORTS > 1 && reportPINs[1]) outputPort(1, readPort(1, portConfigInputs[1]), false);
if (TOTAL_PORTS > 2 && reportPINs[2]) outputPort(2, readPort(2, portConfigInputs[2]), false);
if (TOTAL_PORTS > 3 && reportPINs[3]) outputPort(3, readPort(3, portConfigInputs[3]), false);
if (TOTAL_PORTS > 4 && reportPINs[4]) outputPort(4, readPort(4, portConfigInputs[4]), false);
if (TOTAL_PORTS > 5 && reportPINs[5]) outputPort(5, readPort(5, portConfigInputs[5]), false);
if (TOTAL_PORTS > 6 && reportPINs[6]) outputPort(6, readPort(6, portConfigInputs[6]), false);
if (TOTAL_PORTS > 7 && reportPINs[7]) outputPort(7, readPort(7, portConfigInputs[7]), false);
if (TOTAL_PORTS > 8 && reportPINs[8]) outputPort(8, readPort(8, portConfigInputs[8]), false);
if (TOTAL_PORTS > 9 && reportPINs[9]) outputPort(9, readPort(9, portConfigInputs[9]), false);
if (TOTAL_PORTS > 10 && reportPINs[10]) outputPort(10, readPort(10, portConfigInputs[10]), false);
if (TOTAL_PORTS > 11 && reportPINs[11]) outputPort(11, readPort(11, portConfigInputs[11]), false);
if (TOTAL_PORTS > 12 && reportPINs[12]) outputPort(12, readPort(12, portConfigInputs[12]), false);
if (TOTAL_PORTS > 13 && reportPINs[13]) outputPort(13, readPort(13, portConfigInputs[13]), false);
if (TOTAL_PORTS > 14 && reportPINs[14]) outputPort(14, readPort(14, portConfigInputs[14]), false);
if (TOTAL_PORTS > 15 && reportPINs[15]) outputPort(15, readPort(15, portConfigInputs[15]), false);
}
// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
* two bit-arrays that track Digital I/O and PWM status
*/
void setPinModeCallback(byte pin, int mode)
{
if (Firmata.getPinMode(pin) == PIN_MODE_IGNORE)
return;
if (Firmata.getPinMode(pin) == PIN_MODE_I2C && isI2CEnabled && mode != PIN_MODE_I2C) {
// disable i2c so pins can be used for other functions
// the following if statements should reconfigure the pins properly
disableI2CPins();
}
if (IS_PIN_DIGITAL(pin) && mode != PIN_MODE_SERVO) {
if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
detachServo(pin);
}
}
if (IS_PIN_ANALOG(pin)) {
// turn on/off reporting
reportAnalogCallback(PIN_TO_ANALOG(pin), mode == PIN_MODE_ANALOG ? 1 : 0);
}
if (IS_PIN_DIGITAL(pin)) {
if (mode == INPUT || mode == PIN_MODE_PULLUP) {
portConfigInputs[pin / 8] |= (1 << (pin & 7));
} else {
portConfigInputs[pin / 8] &= ~(1 << (pin & 7));
}
}
Firmata.setPinState(pin, 0);
switch (mode) {
case PIN_MODE_ANALOG:
if (IS_PIN_ANALOG(pin)) {
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
#if ARDUINO <= 100
// deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
}
Firmata.setPinMode(pin, PIN_MODE_ANALOG);
}
break;
case INPUT:
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
#if ARDUINO <= 100
// deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
Firmata.setPinMode(pin, INPUT);
}
break;
case PIN_MODE_PULLUP:
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT_PULLUP);
Firmata.setPinMode(pin, PIN_MODE_PULLUP);
Firmata.setPinState(pin, 1);
}
break;
case OUTPUT:
if (IS_PIN_DIGITAL(pin)) {
if (Firmata.getPinMode(pin) == PIN_MODE_PWM) {
// Disable PWM if pin mode was previously set to PWM.
digitalWrite(PIN_TO_DIGITAL(pin), LOW);
}
pinMode(PIN_TO_DIGITAL(pin), OUTPUT);
Firmata.setPinMode(pin, OUTPUT);
}
break;
case PIN_MODE_PWM:
if (IS_PIN_PWM(pin)) {
pinMode(PIN_TO_PWM(pin), OUTPUT);
analogWrite(PIN_TO_PWM(pin), 0);
Firmata.setPinMode(pin, PIN_MODE_PWM);
}
break;
case PIN_MODE_SERVO:
if (IS_PIN_DIGITAL(pin)) {
Firmata.setPinMode(pin, PIN_MODE_SERVO);
if (servoPinMap[pin] == 255 || !servos[servoPinMap[pin]].attached()) {
// pass -1 for min and max pulse values to use default values set
// by Servo library
attachServo(pin, -1, -1);
}
}
break;
case PIN_MODE_I2C:
if (IS_PIN_I2C(pin)) {
// mark the pin as i2c
// the user must call I2C_CONFIG to enable I2C for a device
Firmata.setPinMode(pin, PIN_MODE_I2C);
}
break;
case PIN_MODE_SERIAL:
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.handlePinMode(pin, PIN_MODE_SERIAL);
#endif
break;
default:
Firmata.sendString("Unknown pin mode"); // TODO: put error msgs in EEPROM
}
// TODO: save status to EEPROM here, if changed
}
/*
* Sets the value of an individual pin. Useful if you want to set a pin value but
* are not tracking the digital port state.
* Can only be used on pins configured as OUTPUT.
* Cannot be used to enable pull-ups on Digital INPUT pins.
*/
void setPinValueCallback(byte pin, int value)
{
if (pin < TOTAL_PINS && IS_PIN_DIGITAL(pin)) {
if (Firmata.getPinMode(pin) == OUTPUT) {
Firmata.setPinState(pin, value);
digitalWrite(PIN_TO_DIGITAL(pin), value);
}
}
}
void analogWriteCallback(byte pin, int value)
{
if (pin < TOTAL_PINS) {
switch (Firmata.getPinMode(pin)) {
case PIN_MODE_SERVO:
if (IS_PIN_DIGITAL(pin))
servos[servoPinMap[pin]].write(value);
Firmata.setPinState(pin, value);
break;
case PIN_MODE_PWM:
if (IS_PIN_PWM(pin))
analogWrite(PIN_TO_PWM(pin), value);
Firmata.setPinState(pin, value);
break;
}
}
}
void digitalWriteCallback(byte port, int value)
{
byte pin, lastPin, pinValue, mask = 1, pinWriteMask = 0;
if (port < TOTAL_PORTS) {
// create a mask of the pins on this port that are writable.
lastPin = port * 8 + 8;
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
for (pin = port * 8; pin < lastPin; pin++) {
// do not disturb non-digital pins (eg, Rx & Tx)
if (IS_PIN_DIGITAL(pin)) {
// do not touch pins in PWM, ANALOG, SERVO or other modes
if (Firmata.getPinMode(pin) == OUTPUT || Firmata.getPinMode(pin) == INPUT) {
pinValue = ((byte)value & mask) ? 1 : 0;
if (Firmata.getPinMode(pin) == OUTPUT) {
pinWriteMask |= mask;
} else if (Firmata.getPinMode(pin) == INPUT && pinValue == 1 && Firmata.getPinState(pin) != 1) {
// only handle INPUT here for backwards compatibility
#if ARDUINO > 100
pinMode(pin, INPUT_PULLUP);
#else
// only write to the INPUT pin to enable pullups if Arduino v1.0.0 or earlier
pinWriteMask |= mask;
#endif
}
Firmata.setPinState(pin, pinValue);
}
}
mask = mask << 1;
}
writePort(port, (byte)value, pinWriteMask);
}
}
// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
*/
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte analogPin, int value)
{
if (analogPin < TOTAL_ANALOG_PINS) {
if (value == 0) {
analogInputsToReport = analogInputsToReport & ~ (1 << analogPin);
} else {
analogInputsToReport = analogInputsToReport | (1 << analogPin);
// prevent during system reset or all analog pin values will be reported
// which may report noise for unconnected analog pins
if (!isResetting) {
// Send pin value immediately. This is helpful when connected via
// ethernet, wi-fi or bluetooth so pin states can be known upon
// reconnecting.
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}
// TODO: save status to EEPROM here, if changed
}
void reportDigitalCallback(byte port, int value)
{
if (port < TOTAL_PORTS) {
reportPINs[port] = (byte)value;
// Send port value immediately. This is helpful when connected via
// ethernet, wi-fi or bluetooth so pin states can be known upon
// reconnecting.
if (value) outputPort(port, readPort(port, portConfigInputs[port]), true);
}
// do not disable analog reporting on these 8 pins, to allow some
// pins used for digital, others analog. Instead, allow both types
// of reporting to be enabled, but check if the pin is configured
// as analog when sampling the analog inputs. Likewise, while
// scanning digital pins, portConfigInputs will mask off values from any
// pins configured as analog
}
/*==============================================================================
* SYSEX-BASED commands
*============================================================================*/
void sysexCallback(byte command, byte argc, byte *argv)
{
byte mode;
byte stopTX;
byte slaveAddress;
byte data;
int slaveRegister;
unsigned int delayTime;
switch (command) {
case I2C_REQUEST:
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
Firmata.sendString("10-bit addressing not supported");
return;
}
else {
slaveAddress = argv[0];
}
// need to invert the logic here since 0 will be default for client
// libraries that have not updated to add support for restart tx
if (argv[1] & I2C_END_TX_MASK) {
stopTX = I2C_RESTART_TX;
}
else {
stopTX = I2C_STOP_TX; // default
}
switch (mode) {
case I2C_WRITE:
Wire.beginTransmission(slaveAddress);
for (byte i = 2; i < argc; i += 2) {
data = argv[i] + (argv[i + 1] << 7);
wireWrite(data);
}
Wire.endTransmission();
delayMicroseconds(70);
break;
case I2C_READ:
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
}
else {
// a slave register is NOT specified
slaveRegister = I2C_REGISTER_NOT_SPECIFIED;
data = argv[2] + (argv[3] << 7); // bytes to read
}
readAndReportData(slaveAddress, (int)slaveRegister, data, stopTX);
break;
case I2C_READ_CONTINUOUSLY:
if ((queryIndex + 1) >= I2C_MAX_QUERIES) {
// too many queries, just ignore
Firmata.sendString("too many queries");
break;
}
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
}
else {
// a slave register is NOT specified
slaveRegister = (int)I2C_REGISTER_NOT_SPECIFIED;
data = argv[2] + (argv[3] << 7); // bytes to read
}
queryIndex++;
query[queryIndex].addr = slaveAddress;
query[queryIndex].reg = slaveRegister;
query[queryIndex].bytes = data;
query[queryIndex].stopTX = stopTX;
break;
case I2C_STOP_READING:
byte queryIndexToSkip;
// if read continuous mode is enabled for only 1 i2c device, disable
// read continuous reporting for that device
if (queryIndex <= 0) {
queryIndex = -1;
} else {
queryIndexToSkip = 0;
// if read continuous mode is enabled for multiple devices,
// determine which device to stop reading and remove it's data from
// the array, shifiting other array data to fill the space
for (byte i = 0; i < queryIndex + 1; i++) {
if (query[i].addr == slaveAddress) {
queryIndexToSkip = i;
break;
}
}
for (byte i = queryIndexToSkip; i < queryIndex + 1; i++) {
if (i < I2C_MAX_QUERIES) {
query[i].addr = query[i + 1].addr;
query[i].reg = query[i + 1].reg;
query[i].bytes = query[i + 1].bytes;
query[i].stopTX = query[i + 1].stopTX;
}
}
queryIndex--;
}
break;
default:
break;
}
break;
case I2C_CONFIG:
delayTime = (argv[0] + (argv[1] << 7));
if (argc > 1 && delayTime > 0) {
i2cReadDelayTime = delayTime;
}
if (!isI2CEnabled) {
enableI2CPins();
}
break;
case SERVO_CONFIG:
if (argc > 4) {
// these vars are here for clarity, they'll optimized away by the compiler
byte pin = argv[0];
int minPulse = argv[1] + (argv[2] << 7);
int maxPulse = argv[3] + (argv[4] << 7);
if (IS_PIN_DIGITAL(pin)) {
if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
detachServo(pin);
}
attachServo(pin, minPulse, maxPulse);
setPinModeCallback(pin, PIN_MODE_SERVO);
}
}
break;
case SAMPLING_INTERVAL:
if (argc > 1) {
samplingInterval = argv[0] + (argv[1] << 7);
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
}
} else {
//Firmata.sendString("Not enough data");
}
break;
case EXTENDED_ANALOG:
if (argc > 1) {
int val = argv[1];
if (argc > 2) val |= (argv[2] << 7);
if (argc > 3) val |= (argv[3] << 14);
analogWriteCallback(argv[0], val);
}
break;
case CAPABILITY_QUERY:
Firmata.write(START_SYSEX);
Firmata.write(CAPABILITY_RESPONSE);
for (byte pin = 0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_DIGITAL(pin)) {
Firmata.write((byte)INPUT);
Firmata.write(1);
Firmata.write((byte)PIN_MODE_PULLUP);
Firmata.write(1);
Firmata.write((byte)OUTPUT);
Firmata.write(1);
}
if (IS_PIN_ANALOG(pin)) {
Firmata.write(PIN_MODE_ANALOG);
Firmata.write(10); // 10 = 10-bit resolution
}
if (IS_PIN_PWM(pin)) {
Firmata.write(PIN_MODE_PWM);
Firmata.write(DEFAULT_PWM_RESOLUTION);
}
if (IS_PIN_DIGITAL(pin)) {
Firmata.write(PIN_MODE_SERVO);
Firmata.write(14);
}
if (IS_PIN_I2C(pin)) {
Firmata.write(PIN_MODE_I2C);
Firmata.write(1); // TODO: could assign a number to map to SCL or SDA
}
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.handleCapability(pin);
#endif
Firmata.write(127);
}
Firmata.write(END_SYSEX);
break;
case PIN_STATE_QUERY:
if (argc > 0) {
byte pin = argv[0];
Firmata.write(START_SYSEX);
Firmata.write(PIN_STATE_RESPONSE);
Firmata.write(pin);
if (pin < TOTAL_PINS) {
Firmata.write(Firmata.getPinMode(pin));
Firmata.write((byte)Firmata.getPinState(pin) & 0x7F);
if (Firmata.getPinState(pin) & 0xFF80) Firmata.write((byte)(Firmata.getPinState(pin) >> 7) & 0x7F);
if (Firmata.getPinState(pin) & 0xC000) Firmata.write((byte)(Firmata.getPinState(pin) >> 14) & 0x7F);
}
Firmata.write(END_SYSEX);
}
break;
case ANALOG_MAPPING_QUERY:
Firmata.write(START_SYSEX);
Firmata.write(ANALOG_MAPPING_RESPONSE);
for (byte pin = 0; pin < TOTAL_PINS; pin++) {
Firmata.write(IS_PIN_ANALOG(pin) ? PIN_TO_ANALOG(pin) : 127);
}
Firmata.write(END_SYSEX);
break;
case SERIAL_MESSAGE:
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.handleSysex(command, argc, argv);
#endif
break;
}
}
/*==============================================================================
* SETUP()
*============================================================================*/
void systemResetCallback()
{
isResetting = true;
// initialize a defalt state
// TODO: option to load config from EEPROM instead of default
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.reset();
#endif
if (isI2CEnabled) {
disableI2CPins();
}
for (byte i = 0; i < TOTAL_PORTS; i++) {
reportPINs[i] = false; // by default, reporting off
portConfigInputs[i] = 0; // until activated
previousPINs[i] = 0;
}
for (byte i = 0; i < TOTAL_PINS; i++) {
// pins with analog capability default to analog input
// otherwise, pins default to digital output
if (IS_PIN_ANALOG(i)) {
// turns off pullup, configures everything
setPinModeCallback(i, PIN_MODE_ANALOG);
} else if (IS_PIN_DIGITAL(i)) {
// sets the output to 0, configures portConfigInputs
setPinModeCallback(i, OUTPUT);
}
servoPinMap[i] = 255;
}
// by default, do not report any analog inputs
analogInputsToReport = 0;
detachedServoCount = 0;
servoCount = 0;
/* send digital inputs to set the initial state on the host computer,
* since once in the loop(), this firmware will only send on change */
/*
TODO: this can never execute, since no pins default to digital input
but it will be needed when/if we support EEPROM stored config
for (byte i=0; i < TOTAL_PORTS; i++) {
outputPort(i, readPort(i, portConfigInputs[i]), true);
}
*/
isResetting = false;
}
void printEthernetStatus()
{
DEBUG_PRINT("Local IP Address: ");
IPAddress ip = Ethernet.localIP();
DEBUG_PRINTLN(ip);
#ifdef remote_ip
DEBUG_PRINT("Connecting to server at: ");
DEBUG_PRINTLN(remote_ip);
#endif
}
/*
* StandardFirmataEthernet communicates with Ethernet shields over SPI. Therefore all
* SPI pins must be set to IGNORE. Otherwise Firmata would break SPI communication.
* Additional pins may also need to be ignored depending on the particular board or
* shield in use.
*/
void ignorePins()
{
#ifdef IS_IGNORE_PIN
for (byte i = 0; i < TOTAL_PINS; i++) {
if (IS_IGNORE_PIN(i)) {
Firmata.setPinMode(i, PIN_MODE_IGNORE);
}
}
#endif
#ifdef WIZ5100_ETHERNET
// Arduino Ethernet and Arduino EthernetShield have SD SS wired to D4
pinMode(PIN_TO_DIGITAL(4), OUTPUT); // switch off SD card bypassing Firmata
digitalWrite(PIN_TO_DIGITAL(4), HIGH); // SS is active low;
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
pinMode(PIN_TO_DIGITAL(53), OUTPUT); // configure hardware SS as output on MEGA
#endif
#endif // WIZ5100_ETHERNET
}
void initTransport()
{
#ifdef YUN_ETHERNET
Bridge.begin();
#else
#ifdef local_ip
Ethernet.begin((uint8_t *)mac, local_ip); //start ethernet
#else
DEBUG_PRINTLN("Local IP will be requested from DHCP...");
//start ethernet using dhcp
if (Ethernet.begin((uint8_t *)mac) == 0) {
DEBUG_PRINTLN("Failed to configure Ethernet using DHCP");
}
#endif
#endif
printEthernetStatus();
}
void initFirmata()
{
Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION);
Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
Firmata.attach(SET_PIN_MODE, setPinModeCallback);
Firmata.attach(SET_DIGITAL_PIN_VALUE, setPinValueCallback);
Firmata.attach(START_SYSEX, sysexCallback);
Firmata.attach(SYSTEM_RESET, systemResetCallback);
ignorePins();
// start up Network Firmata:
Firmata.begin(stream);
systemResetCallback(); // Initialize default configuration
}
void setup()
{
DEBUG_BEGIN(9600);
initTransport();
initFirmata();
}
/*==============================================================================
* LOOP()
*============================================================================*/
void loop()
{
byte pin, analogPin;
/* DIGITALREAD - as fast as possible, check for changes and output them to the
* Stream buffer using Stream.write() */
checkDigitalInputs();
/* STREAMREAD - processing incoming messagse as soon as possible, while still
* checking digital inputs. */
while (Firmata.available())
Firmata.processInput();
// TODO - ensure that Stream buffer doesn't go over 60 bytes
currentMillis = millis();
if (currentMillis - previousMillis > samplingInterval) {
previousMillis += samplingInterval;
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
for (pin = 0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_ANALOG(pin) && Firmata.getPinMode(pin) == PIN_MODE_ANALOG) {
analogPin = PIN_TO_ANALOG(pin);
if (analogInputsToReport & (1 << analogPin)) {
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}
// report i2c data for all device with read continuous mode enabled
if (queryIndex > -1) {
for (byte i = 0; i < queryIndex + 1; i++) {
readAndReportData(query[i].addr, query[i].reg, query[i].bytes, query[i].stopTX);
}
}
}
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.update();
#endif
#if !defined local_ip && !defined YUN_ETHERNET
// only necessary when using DHCP, ensures local IP is updated appropriately if it changes
if (Ethernet.maintain()) {
stream.maintain(Ethernet.localIP());
}
#endif
}

View File

@ -0,0 +1,94 @@
/*==============================================================================
* NETWORK CONFIGURATION
*
* You must configure your particular hardware. Follow the steps below.
*
* By default, StandardFirmataEthernet is configured as a TCP client.
* To configure as a TCP server, see STEP 2
*============================================================================*/
// STEP 1 [REQUIRED]
// Uncomment / comment the appropriate set of includes for your hardware (OPTION A or B)
// Option A is enabled by default.
/*
* OPTION A: Configure for Arduino Ethernet board or Arduino Ethernet shield (or clone)
*
* To configure StandardFirmataEthernet to use the original WIZ5100-based
* ethernet shield or Arduino Ethernet uncomment the WIZ5100_ETHERNET define below
*/
#define WIZ5100_ETHERNET
#ifdef WIZ5100_ETHERNET
#include <SPI.h>
#include <Ethernet.h>
EthernetClient client;
#endif
/*
* OPTION B: Configure for Arduin Yun
*
* The Ethernet port on the Arduino Yun board can be used with Firmata in this configuration.
*
* To execute StandardFirmataEthernet on Yun uncomment the YUN_ETHERNET define below and make
* sure the WIZ5100_ETHERNET define (above) is commented out.
*
* On Yun there's no need to configure local_ip and mac address as this is automatically
* configured on the linux-side of Yun.
*
* Note that it may take several seconds to establish a connection with the Yun.
*/
//#define YUN_ETHERNET
#ifdef YUN_ETHERNET
#include <Bridge.h>
#include <YunClient.h>
YunClient client;
#endif
// STEP 2 [REQUIRED for all boards and shields]
// TCP Client configuration:
// To configure your board as a TCP client, set the IP address of the server you want to connect to.
// TCP Server configuration:
// To configure your board as a TCP server, comment out the following line and also ensure that
// remote_host is also commented out.
#define remote_ip IPAddress(10, 0, 0, 3)
// *** REMOTE HOST IS NOT YET WORKING ***
// replace with hostname of server you want to connect to, comment out if using 'remote_ip'
// #define remote_host "server.local"
// STEP 3 [REQUIRED]
// Replace with the port that your client or server is listening on.
#define network_port 3030
// STEP 4 [REQUIRED unless using DHCP]
// Replace with your board or ethernet shield's IP address
// Comment out if you want to use DHCP
#define local_ip IPAddress(10, 0, 0, 15)
// STEP 5 [REQUIRED]
// replace with ethernet shield mac. Must be unique for your network
const byte mac[] = {0x90, 0xA2, 0xDA, 0x00, 0x53, 0xE5};
/*==============================================================================
* CONFIGURATION ERROR CHECK (don't change anything here)
*============================================================================*/
#if !defined WIZ5100_ETHERNET && !defined YUN_ETHERNET
#error "you must define either WIZ5100_ETHERNET or YUN_ETHERNET in ethernetConfig.h"
#endif
#if defined remote_ip && defined remote_host
#error "cannot define both remote_ip and remote_host at the same time in ethernetConfig.h"
#endif
/*==============================================================================
* PIN IGNORE MACROS (don't change anything here)
*============================================================================*/
#if defined(WIZ5100_ETHERNET)
// ignore SPI pins, pin 10 (Ethernet SS) and pin 4 (SS for SD-Card on Ethernet shield)
#define IS_IGNORE_PIN(p) ((IS_PIN_SPI(p) || (p) == 4) || (p) == 10)
#endif

View File

@ -0,0 +1,458 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

View File

@ -0,0 +1,851 @@
/*
Firmata is a generic protocol for communicating with microcontrollers
from software on a host computer. It is intended to work with
any host computer software package.
To download a host software package, please click on the following link
to open the list of Firmata client libraries in your default browser.
https://github.com/firmata/arduino#firmata-client-libraries
Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2010-2011 Paul Stoffregen. All rights reserved.
Copyright (C) 2009 Shigeru Kobayashi. All rights reserved.
Copyright (C) 2009-2016 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
Last updated August 17th, 2017
*/
/*
README
StandardFirmataPlus adds additional features that may exceed the Flash and
RAM sizes of Arduino boards such as ATMega328p (Uno) and ATMega32u4
(Leonardo, Micro, Yun, etc). It is best to use StandardFirmataPlus with higher
memory boards such as the Arduino Mega, Arduino Due, Teensy 3.0/3.1/3.2.
All Firmata examples that are appended with "Plus" add the following features:
- Ability to interface with serial devices using UART, USART, or SoftwareSerial
depending on the capatilities of the board.
NOTE: In order to use SoftwareSerial with the Firmata Serial feature,
StandardFirmataPlus must be compiled with Arduino v1.6.6 or newer.
At the time of this writing, StandardFirmataPlus will still compile and run
on ATMega328p and ATMega32u4-based boards, but future versions of this sketch
may not as new features are added.
*/
#include <Servo.h>
#include <Wire.h>
#include <Firmata.h>
// In order to use software serial, you will need to compile this sketch with
// Arduino IDE v1.6.6 or higher. Hardware serial should work back to Arduino 1.0.
#include "utility/SerialFirmata.h"
#define I2C_WRITE B00000000
#define I2C_READ B00001000
#define I2C_READ_CONTINUOUSLY B00010000
#define I2C_STOP_READING B00011000
#define I2C_READ_WRITE_MODE_MASK B00011000
#define I2C_10BIT_ADDRESS_MODE_MASK B00100000
#define I2C_END_TX_MASK B01000000
#define I2C_STOP_TX 1
#define I2C_RESTART_TX 0
#define I2C_MAX_QUERIES 8
#define I2C_REGISTER_NOT_SPECIFIED -1
// the minimum interval for sampling analog input
#define MINIMUM_SAMPLING_INTERVAL 1
/*==============================================================================
* GLOBAL VARIABLES
*============================================================================*/
#ifdef FIRMATA_SERIAL_FEATURE
SerialFirmata serialFeature;
#endif
/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting
/* digital input ports */
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
/* pins configuration */
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
/* timer variables */
unsigned long currentMillis; // store the current value from millis()
unsigned long previousMillis; // for comparison with currentMillis
unsigned int samplingInterval = 19; // how often to run the main loop (in ms)
/* i2c data */
struct i2c_device_info {
byte addr;
int reg;
byte bytes;
byte stopTX;
};
/* for i2c read continuous more */
i2c_device_info query[I2C_MAX_QUERIES];
byte i2cRxData[64];
boolean isI2CEnabled = false;
signed char queryIndex = -1;
// default delay time between i2c read request and Wire.requestFrom()
unsigned int i2cReadDelayTime = 0;
Servo servos[MAX_SERVOS];
byte servoPinMap[TOTAL_PINS];
byte detachedServos[MAX_SERVOS];
byte detachedServoCount = 0;
byte servoCount = 0;
boolean isResetting = false;
// Forward declare a few functions to avoid compiler errors with older versions
// of the Arduino IDE.
void setPinModeCallback(byte, int);
void reportAnalogCallback(byte analogPin, int value);
void sysexCallback(byte, byte, byte*);
/* utility functions */
void wireWrite(byte data)
{
#if ARDUINO >= 100
Wire.write((byte)data);
#else
Wire.send(data);
#endif
}
byte wireRead(void)
{
#if ARDUINO >= 100
return Wire.read();
#else
return Wire.receive();
#endif
}
/*==============================================================================
* FUNCTIONS
*============================================================================*/
void attachServo(byte pin, int minPulse, int maxPulse)
{
if (servoCount < MAX_SERVOS) {
// reuse indexes of detached servos until all have been reallocated
if (detachedServoCount > 0) {
servoPinMap[pin] = detachedServos[detachedServoCount - 1];
if (detachedServoCount > 0) detachedServoCount--;
} else {
servoPinMap[pin] = servoCount;
servoCount++;
}
if (minPulse > 0 && maxPulse > 0) {
servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin), minPulse, maxPulse);
} else {
servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin));
}
} else {
Firmata.sendString("Max servos attached");
}
}
void detachServo(byte pin)
{
servos[servoPinMap[pin]].detach();
// if we're detaching the last servo, decrement the count
// otherwise store the index of the detached servo
if (servoPinMap[pin] == servoCount && servoCount > 0) {
servoCount--;
} else if (servoCount > 0) {
// keep track of detached servos because we want to reuse their indexes
// before incrementing the count of attached servos
detachedServoCount++;
detachedServos[detachedServoCount - 1] = servoPinMap[pin];
}
servoPinMap[pin] = 255;
}
void enableI2CPins()
{
byte i;
// is there a faster way to do this? would probaby require importing
// Arduino.h to get SCL and SDA pins
for (i = 0; i < TOTAL_PINS; i++) {
if (IS_PIN_I2C(i)) {
// mark pins as i2c so they are ignore in non i2c data requests
setPinModeCallback(i, PIN_MODE_I2C);
}
}
isI2CEnabled = true;
Wire.begin();
}
/* disable the i2c pins so they can be used for other functions */
void disableI2CPins() {
isI2CEnabled = false;
// disable read continuous mode for all devices
queryIndex = -1;
}
void readAndReportData(byte address, int theRegister, byte numBytes, byte stopTX) {
// allow I2C requests that don't require a register read
// for example, some devices using an interrupt pin to signify new data available
// do not always require the register read so upon interrupt you call Wire.requestFrom()
if (theRegister != I2C_REGISTER_NOT_SPECIFIED) {
Wire.beginTransmission(address);
wireWrite((byte)theRegister);
Wire.endTransmission(stopTX); // default = true
// do not set a value of 0
if (i2cReadDelayTime > 0) {
// delay is necessary for some devices such as WiiNunchuck
delayMicroseconds(i2cReadDelayTime);
}
} else {
theRegister = 0; // fill the register with a dummy value
}
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
// check to be sure correct number of bytes were returned by slave
if (numBytes < Wire.available()) {
Firmata.sendString("I2C: Too many bytes received");
} else if (numBytes > Wire.available()) {
Firmata.sendString("I2C: Too few bytes received");
}
i2cRxData[0] = address;
i2cRxData[1] = theRegister;
for (int i = 0; i < numBytes && Wire.available(); i++) {
i2cRxData[2 + i] = wireRead();
}
// send slave address, register and received bytes
Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
}
void outputPort(byte portNumber, byte portValue, byte forceSend)
{
// pins not configured as INPUT are cleared to zeros
portValue = portValue & portConfigInputs[portNumber];
// only send if the value is different than previously sent
if (forceSend || previousPINs[portNumber] != portValue) {
Firmata.sendDigitalPort(portNumber, portValue);
previousPINs[portNumber] = portValue;
}
}
/* -----------------------------------------------------------------------------
* check all the active digital inputs for change of state, then add any events
* to the Serial output queue using Serial.print() */
void checkDigitalInputs(void)
{
/* Using non-looping code allows constants to be given to readPort().
* The compiler will apply substantial optimizations if the inputs
* to readPort() are compile-time constants. */
if (TOTAL_PORTS > 0 && reportPINs[0]) outputPort(0, readPort(0, portConfigInputs[0]), false);
if (TOTAL_PORTS > 1 && reportPINs[1]) outputPort(1, readPort(1, portConfigInputs[1]), false);
if (TOTAL_PORTS > 2 && reportPINs[2]) outputPort(2, readPort(2, portConfigInputs[2]), false);
if (TOTAL_PORTS > 3 && reportPINs[3]) outputPort(3, readPort(3, portConfigInputs[3]), false);
if (TOTAL_PORTS > 4 && reportPINs[4]) outputPort(4, readPort(4, portConfigInputs[4]), false);
if (TOTAL_PORTS > 5 && reportPINs[5]) outputPort(5, readPort(5, portConfigInputs[5]), false);
if (TOTAL_PORTS > 6 && reportPINs[6]) outputPort(6, readPort(6, portConfigInputs[6]), false);
if (TOTAL_PORTS > 7 && reportPINs[7]) outputPort(7, readPort(7, portConfigInputs[7]), false);
if (TOTAL_PORTS > 8 && reportPINs[8]) outputPort(8, readPort(8, portConfigInputs[8]), false);
if (TOTAL_PORTS > 9 && reportPINs[9]) outputPort(9, readPort(9, portConfigInputs[9]), false);
if (TOTAL_PORTS > 10 && reportPINs[10]) outputPort(10, readPort(10, portConfigInputs[10]), false);
if (TOTAL_PORTS > 11 && reportPINs[11]) outputPort(11, readPort(11, portConfigInputs[11]), false);
if (TOTAL_PORTS > 12 && reportPINs[12]) outputPort(12, readPort(12, portConfigInputs[12]), false);
if (TOTAL_PORTS > 13 && reportPINs[13]) outputPort(13, readPort(13, portConfigInputs[13]), false);
if (TOTAL_PORTS > 14 && reportPINs[14]) outputPort(14, readPort(14, portConfigInputs[14]), false);
if (TOTAL_PORTS > 15 && reportPINs[15]) outputPort(15, readPort(15, portConfigInputs[15]), false);
}
// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
* two bit-arrays that track Digital I/O and PWM status
*/
void setPinModeCallback(byte pin, int mode)
{
if (Firmata.getPinMode(pin) == PIN_MODE_IGNORE)
return;
if (Firmata.getPinMode(pin) == PIN_MODE_I2C && isI2CEnabled && mode != PIN_MODE_I2C) {
// disable i2c so pins can be used for other functions
// the following if statements should reconfigure the pins properly
disableI2CPins();
}
if (IS_PIN_DIGITAL(pin) && mode != PIN_MODE_SERVO) {
if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
detachServo(pin);
}
}
if (IS_PIN_ANALOG(pin)) {
reportAnalogCallback(PIN_TO_ANALOG(pin), mode == PIN_MODE_ANALOG ? 1 : 0); // turn on/off reporting
}
if (IS_PIN_DIGITAL(pin)) {
if (mode == INPUT || mode == PIN_MODE_PULLUP) {
portConfigInputs[pin / 8] |= (1 << (pin & 7));
} else {
portConfigInputs[pin / 8] &= ~(1 << (pin & 7));
}
}
Firmata.setPinState(pin, 0);
switch (mode) {
case PIN_MODE_ANALOG:
if (IS_PIN_ANALOG(pin)) {
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
#if ARDUINO <= 100
// deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
}
Firmata.setPinMode(pin, PIN_MODE_ANALOG);
}
break;
case INPUT:
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
#if ARDUINO <= 100
// deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
Firmata.setPinMode(pin, INPUT);
}
break;
case PIN_MODE_PULLUP:
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT_PULLUP);
Firmata.setPinMode(pin, PIN_MODE_PULLUP);
Firmata.setPinState(pin, 1);
}
break;
case OUTPUT:
if (IS_PIN_DIGITAL(pin)) {
if (Firmata.getPinMode(pin) == PIN_MODE_PWM) {
// Disable PWM if pin mode was previously set to PWM.
digitalWrite(PIN_TO_DIGITAL(pin), LOW);
}
pinMode(PIN_TO_DIGITAL(pin), OUTPUT);
Firmata.setPinMode(pin, OUTPUT);
}
break;
case PIN_MODE_PWM:
if (IS_PIN_PWM(pin)) {
pinMode(PIN_TO_PWM(pin), OUTPUT);
analogWrite(PIN_TO_PWM(pin), 0);
Firmata.setPinMode(pin, PIN_MODE_PWM);
}
break;
case PIN_MODE_SERVO:
if (IS_PIN_DIGITAL(pin)) {
Firmata.setPinMode(pin, PIN_MODE_SERVO);
if (servoPinMap[pin] == 255 || !servos[servoPinMap[pin]].attached()) {
// pass -1 for min and max pulse values to use default values set
// by Servo library
attachServo(pin, -1, -1);
}
}
break;
case PIN_MODE_I2C:
if (IS_PIN_I2C(pin)) {
// mark the pin as i2c
// the user must call I2C_CONFIG to enable I2C for a device
Firmata.setPinMode(pin, PIN_MODE_I2C);
}
break;
case PIN_MODE_SERIAL:
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.handlePinMode(pin, PIN_MODE_SERIAL);
#endif
break;
default:
Firmata.sendString("Unknown pin mode"); // TODO: put error msgs in EEPROM
}
// TODO: save status to EEPROM here, if changed
}
/*
* Sets the value of an individual pin. Useful if you want to set a pin value but
* are not tracking the digital port state.
* Can only be used on pins configured as OUTPUT.
* Cannot be used to enable pull-ups on Digital INPUT pins.
*/
void setPinValueCallback(byte pin, int value)
{
if (pin < TOTAL_PINS && IS_PIN_DIGITAL(pin)) {
if (Firmata.getPinMode(pin) == OUTPUT) {
Firmata.setPinState(pin, value);
digitalWrite(PIN_TO_DIGITAL(pin), value);
}
}
}
void analogWriteCallback(byte pin, int value)
{
if (pin < TOTAL_PINS) {
switch (Firmata.getPinMode(pin)) {
case PIN_MODE_SERVO:
if (IS_PIN_DIGITAL(pin))
servos[servoPinMap[pin]].write(value);
Firmata.setPinState(pin, value);
break;
case PIN_MODE_PWM:
if (IS_PIN_PWM(pin))
analogWrite(PIN_TO_PWM(pin), value);
Firmata.setPinState(pin, value);
break;
}
}
}
void digitalWriteCallback(byte port, int value)
{
byte pin, lastPin, pinValue, mask = 1, pinWriteMask = 0;
if (port < TOTAL_PORTS) {
// create a mask of the pins on this port that are writable.
lastPin = port * 8 + 8;
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
for (pin = port * 8; pin < lastPin; pin++) {
// do not disturb non-digital pins (eg, Rx & Tx)
if (IS_PIN_DIGITAL(pin)) {
// do not touch pins in PWM, ANALOG, SERVO or other modes
if (Firmata.getPinMode(pin) == OUTPUT || Firmata.getPinMode(pin) == INPUT) {
pinValue = ((byte)value & mask) ? 1 : 0;
if (Firmata.getPinMode(pin) == OUTPUT) {
pinWriteMask |= mask;
} else if (Firmata.getPinMode(pin) == INPUT && pinValue == 1 && Firmata.getPinState(pin) != 1) {
// only handle INPUT here for backwards compatibility
#if ARDUINO > 100
pinMode(pin, INPUT_PULLUP);
#else
// only write to the INPUT pin to enable pullups if Arduino v1.0.0 or earlier
pinWriteMask |= mask;
#endif
}
Firmata.setPinState(pin, pinValue);
}
}
mask = mask << 1;
}
writePort(port, (byte)value, pinWriteMask);
}
}
// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
*/
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte analogPin, int value)
{
if (analogPin < TOTAL_ANALOG_PINS) {
if (value == 0) {
analogInputsToReport = analogInputsToReport & ~ (1 << analogPin);
} else {
analogInputsToReport = analogInputsToReport | (1 << analogPin);
// prevent during system reset or all analog pin values will be reported
// which may report noise for unconnected analog pins
if (!isResetting) {
// Send pin value immediately. This is helpful when connected via
// ethernet, wi-fi or bluetooth so pin states can be known upon
// reconnecting.
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}
// TODO: save status to EEPROM here, if changed
}
void reportDigitalCallback(byte port, int value)
{
if (port < TOTAL_PORTS) {
reportPINs[port] = (byte)value;
// Send port value immediately. This is helpful when connected via
// ethernet, wi-fi or bluetooth so pin states can be known upon
// reconnecting.
if (value) outputPort(port, readPort(port, portConfigInputs[port]), true);
}
// do not disable analog reporting on these 8 pins, to allow some
// pins used for digital, others analog. Instead, allow both types
// of reporting to be enabled, but check if the pin is configured
// as analog when sampling the analog inputs. Likewise, while
// scanning digital pins, portConfigInputs will mask off values from any
// pins configured as analog
}
/*==============================================================================
* SYSEX-BASED commands
*============================================================================*/
void sysexCallback(byte command, byte argc, byte *argv)
{
byte mode;
byte stopTX;
byte slaveAddress;
byte data;
int slaveRegister;
unsigned int delayTime;
switch (command) {
case I2C_REQUEST:
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
Firmata.sendString("10-bit addressing not supported");
return;
}
else {
slaveAddress = argv[0];
}
// need to invert the logic here since 0 will be default for client
// libraries that have not updated to add support for restart tx
if (argv[1] & I2C_END_TX_MASK) {
stopTX = I2C_RESTART_TX;
}
else {
stopTX = I2C_STOP_TX; // default
}
switch (mode) {
case I2C_WRITE:
Wire.beginTransmission(slaveAddress);
for (byte i = 2; i < argc; i += 2) {
data = argv[i] + (argv[i + 1] << 7);
wireWrite(data);
}
Wire.endTransmission();
delayMicroseconds(70);
break;
case I2C_READ:
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
}
else {
// a slave register is NOT specified
slaveRegister = I2C_REGISTER_NOT_SPECIFIED;
data = argv[2] + (argv[3] << 7); // bytes to read
}
readAndReportData(slaveAddress, (int)slaveRegister, data, stopTX);
break;
case I2C_READ_CONTINUOUSLY:
if ((queryIndex + 1) >= I2C_MAX_QUERIES) {
// too many queries, just ignore
Firmata.sendString("too many queries");
break;
}
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
}
else {
// a slave register is NOT specified
slaveRegister = (int)I2C_REGISTER_NOT_SPECIFIED;
data = argv[2] + (argv[3] << 7); // bytes to read
}
queryIndex++;
query[queryIndex].addr = slaveAddress;
query[queryIndex].reg = slaveRegister;
query[queryIndex].bytes = data;
query[queryIndex].stopTX = stopTX;
break;
case I2C_STOP_READING:
byte queryIndexToSkip;
// if read continuous mode is enabled for only 1 i2c device, disable
// read continuous reporting for that device
if (queryIndex <= 0) {
queryIndex = -1;
} else {
queryIndexToSkip = 0;
// if read continuous mode is enabled for multiple devices,
// determine which device to stop reading and remove it's data from
// the array, shifiting other array data to fill the space
for (byte i = 0; i < queryIndex + 1; i++) {
if (query[i].addr == slaveAddress) {
queryIndexToSkip = i;
break;
}
}
for (byte i = queryIndexToSkip; i < queryIndex + 1; i++) {
if (i < I2C_MAX_QUERIES) {
query[i].addr = query[i + 1].addr;
query[i].reg = query[i + 1].reg;
query[i].bytes = query[i + 1].bytes;
query[i].stopTX = query[i + 1].stopTX;
}
}
queryIndex--;
}
break;
default:
break;
}
break;
case I2C_CONFIG:
delayTime = (argv[0] + (argv[1] << 7));
if (argc > 1 && delayTime > 0) {
i2cReadDelayTime = delayTime;
}
if (!isI2CEnabled) {
enableI2CPins();
}
break;
case SERVO_CONFIG:
if (argc > 4) {
// these vars are here for clarity, they'll optimized away by the compiler
byte pin = argv[0];
int minPulse = argv[1] + (argv[2] << 7);
int maxPulse = argv[3] + (argv[4] << 7);
if (IS_PIN_DIGITAL(pin)) {
if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
detachServo(pin);
}
attachServo(pin, minPulse, maxPulse);
setPinModeCallback(pin, PIN_MODE_SERVO);
}
}
break;
case SAMPLING_INTERVAL:
if (argc > 1) {
samplingInterval = argv[0] + (argv[1] << 7);
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
}
} else {
//Firmata.sendString("Not enough data");
}
break;
case EXTENDED_ANALOG:
if (argc > 1) {
int val = argv[1];
if (argc > 2) val |= (argv[2] << 7);
if (argc > 3) val |= (argv[3] << 14);
analogWriteCallback(argv[0], val);
}
break;
case CAPABILITY_QUERY:
Firmata.write(START_SYSEX);
Firmata.write(CAPABILITY_RESPONSE);
for (byte pin = 0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_DIGITAL(pin)) {
Firmata.write((byte)INPUT);
Firmata.write(1);
Firmata.write((byte)PIN_MODE_PULLUP);
Firmata.write(1);
Firmata.write((byte)OUTPUT);
Firmata.write(1);
}
if (IS_PIN_ANALOG(pin)) {
Firmata.write(PIN_MODE_ANALOG);
Firmata.write(10); // 10 = 10-bit resolution
}
if (IS_PIN_PWM(pin)) {
Firmata.write(PIN_MODE_PWM);
Firmata.write(DEFAULT_PWM_RESOLUTION);
}
if (IS_PIN_DIGITAL(pin)) {
Firmata.write(PIN_MODE_SERVO);
Firmata.write(14);
}
if (IS_PIN_I2C(pin)) {
Firmata.write(PIN_MODE_I2C);
Firmata.write(1); // TODO: could assign a number to map to SCL or SDA
}
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.handleCapability(pin);
#endif
Firmata.write(127);
}
Firmata.write(END_SYSEX);
break;
case PIN_STATE_QUERY:
if (argc > 0) {
byte pin = argv[0];
Firmata.write(START_SYSEX);
Firmata.write(PIN_STATE_RESPONSE);
Firmata.write(pin);
if (pin < TOTAL_PINS) {
Firmata.write(Firmata.getPinMode(pin));
Firmata.write((byte)Firmata.getPinState(pin) & 0x7F);
if (Firmata.getPinState(pin) & 0xFF80) Firmata.write((byte)(Firmata.getPinState(pin) >> 7) & 0x7F);
if (Firmata.getPinState(pin) & 0xC000) Firmata.write((byte)(Firmata.getPinState(pin) >> 14) & 0x7F);
}
Firmata.write(END_SYSEX);
}
break;
case ANALOG_MAPPING_QUERY:
Firmata.write(START_SYSEX);
Firmata.write(ANALOG_MAPPING_RESPONSE);
for (byte pin = 0; pin < TOTAL_PINS; pin++) {
Firmata.write(IS_PIN_ANALOG(pin) ? PIN_TO_ANALOG(pin) : 127);
}
Firmata.write(END_SYSEX);
break;
case SERIAL_MESSAGE:
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.handleSysex(command, argc, argv);
#endif
break;
}
}
/*==============================================================================
* SETUP()
*============================================================================*/
void systemResetCallback()
{
isResetting = true;
// initialize a defalt state
// TODO: option to load config from EEPROM instead of default
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.reset();
#endif
if (isI2CEnabled) {
disableI2CPins();
}
for (byte i = 0; i < TOTAL_PORTS; i++) {
reportPINs[i] = false; // by default, reporting off
portConfigInputs[i] = 0; // until activated
previousPINs[i] = 0;
}
for (byte i = 0; i < TOTAL_PINS; i++) {
// pins with analog capability default to analog input
// otherwise, pins default to digital output
if (IS_PIN_ANALOG(i)) {
// turns off pullup, configures everything
setPinModeCallback(i, PIN_MODE_ANALOG);
} else if (IS_PIN_DIGITAL(i)) {
// sets the output to 0, configures portConfigInputs
setPinModeCallback(i, OUTPUT);
}
servoPinMap[i] = 255;
}
// by default, do not report any analog inputs
analogInputsToReport = 0;
detachedServoCount = 0;
servoCount = 0;
/* send digital inputs to set the initial state on the host computer,
* since once in the loop(), this firmware will only send on change */
/*
TODO: this can never execute, since no pins default to digital input
but it will be needed when/if we support EEPROM stored config
for (byte i=0; i < TOTAL_PORTS; i++) {
outputPort(i, readPort(i, portConfigInputs[i]), true);
}
*/
isResetting = false;
}
void setup()
{
Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION);
Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
Firmata.attach(SET_PIN_MODE, setPinModeCallback);
Firmata.attach(SET_DIGITAL_PIN_VALUE, setPinValueCallback);
Firmata.attach(START_SYSEX, sysexCallback);
Firmata.attach(SYSTEM_RESET, systemResetCallback);
// Save a couple of seconds by disabling the startup blink sequence.
Firmata.disableBlinkVersion();
// to use a port other than Serial, such as Serial1 on an Arduino Leonardo or Mega,
// Call begin(baud) on the alternate serial port and pass it to Firmata to begin like this:
// Serial1.begin(57600);
// Firmata.begin(Serial1);
// However do not do this if you are using SERIAL_MESSAGE
Firmata.begin(57600);
while (!Serial) {
; // wait for serial port to connect. Needed for ATmega32u4-based boards and Arduino 101
}
systemResetCallback(); // reset to default config
}
/*==============================================================================
* LOOP()
*============================================================================*/
void loop()
{
byte pin, analogPin;
/* DIGITALREAD - as fast as possible, check for changes and output them to the
* FTDI buffer using Serial.print() */
checkDigitalInputs();
/* STREAMREAD - processing incoming messagse as soon as possible, while still
* checking digital inputs. */
while (Firmata.available())
Firmata.processInput();
// TODO - ensure that Stream buffer doesn't go over 60 bytes
currentMillis = millis();
if (currentMillis - previousMillis > samplingInterval) {
previousMillis += samplingInterval;
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
for (pin = 0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_ANALOG(pin) && Firmata.getPinMode(pin) == PIN_MODE_ANALOG) {
analogPin = PIN_TO_ANALOG(pin);
if (analogInputsToReport & (1 << analogPin)) {
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}
// report i2c data for all device with read continuous mode enabled
if (queryIndex > -1) {
for (byte i = 0; i < queryIndex + 1; i++) {
readAndReportData(query[i].addr, query[i].reg, query[i].bytes, query[i].stopTX);
}
}
}
#ifdef FIRMATA_SERIAL_FEATURE
serialFeature.update();
#endif
}

View File

@ -0,0 +1,458 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,240 @@
/*==============================================================================
* WIFI CONFIGURATION
*
* You must configure your particular hardware. Follow the steps below.
*
* By default, StandardFirmataWiFi is configured as a TCP server, to configure
* as a TCP client, see STEP 2.
*============================================================================*/
// STEP 1 [REQUIRED]
// Uncomment / comment the appropriate set of includes for your hardware (OPTION A, B or C)
// Arduino MKR1000 or ESP8266 are enabled by default if compiling for either of those boards.
/*
* OPTION A: Configure for Arduino MKR1000 or Arduino WiFi Shield 101
*
* This will configure StandardFirmataWiFi to use the WiFi101 library, which works with the
* Arduino WiFi101 shield and devices that have the WiFi101 chip built in (such as the MKR1000).
* It is compatible with 802.11 B/G/N networks.
*
* If you are using the MKR1000 board, continue on to STEP 2. If you are using the WiFi 101 shield,
* follow the instructions below.
*
* To enable for the WiFi 101 shield, uncomment the #define WIFI_101 below and verify the
* #define ARDUINO_WIFI_SHIELD is commented out for OPTION B.
*
* IMPORTANT: You must have the WiFI 101 library installed. To easily install this library, open
* the library manager via: Arduino IDE Menus: Sketch > Include Library > Manage Libraries > filter
* search for "WiFi101" > Select the result and click 'install'
*/
//#define WIFI_101
//do not modify the following 11 lines
#if defined(ARDUINO_SAMD_MKR1000) && !defined(WIFI_101)
// automatically include if compiling for MRK1000
#define WIFI_101
#endif
#ifdef WIFI_101
#include <WiFi101.h>
#include "utility/WiFiClientStream.h"
#include "utility/WiFiServerStream.h"
#define WIFI_LIB_INCLUDED
#endif
/*
* OPTION B: Configure for legacy Arduino WiFi shield
*
* This will configure StandardFirmataWiFi to use the original WiFi library (deprecated) provided
* with the Arduino IDE. It is supported by the Arduino WiFi shield (a discontinued product) and
* is compatible with 802.11 B/G networks.
*
* To configure StandardFirmataWiFi to use the legacy Arduino WiFi shield
* leave the #define below uncommented and ensure #define WIFI_101 is commented out for OPTION A.
*/
//#define ARDUINO_WIFI_SHIELD
//do not modify the following 10 lines
#ifdef ARDUINO_WIFI_SHIELD
#include <WiFi.h>
#include "utility/WiFiClientStream.h"
#include "utility/WiFiServerStream.h"
#ifdef WIFI_LIB_INCLUDED
#define MULTIPLE_WIFI_LIB_INCLUDES
#else
#define WIFI_LIB_INCLUDED
#endif
#endif
/*
* OPTION C: Configure for ESP8266
*
* This will configure StandardFirmataWiFi to use the ESP8266WiFi library for boards
* with an ESP8266 chip. It is compatible with 802.11 B/G/N networks.
*
* The appropriate libraries are included automatically when compiling for the ESP8266 so
* continue on to STEP 2.
*
* IMPORTANT: You must have the esp8266 board support installed. To easily install this board see
* the instructions here: https://github.com/esp8266/Arduino#installing-with-boards-manager.
*/
//do not modify the following 14 lines
#ifdef ESP8266
// automatically include if compiling for ESP8266
#define ESP8266_WIFI
#endif
#ifdef ESP8266_WIFI
#include <ESP8266WiFi.h>
#include "utility/WiFiClientStream.h"
#include "utility/WiFiServerStream.h"
#ifdef WIFI_LIB_INCLUDED
#define MULTIPLE_WIFI_LIB_INCLUDES
#else
#define WIFI_LIB_INCLUDED
#endif
#endif
/*
* OPTION D: Configure for HUZZAH
*
* HUZZAH with CC3000 is not yet supported, this will be added in a later revision to
* StandardFirmataWiFi.
* For HUZZAH with ESP8266 use ESP8266_WIFI.
*/
//------------------------------
// TODO
//------------------------------
//#define HUZZAH_WIFI
// STEP 2 [OPTIONAL for all boards and shields]
// If you want to setup you board as a TCP client, uncomment the following define and replace
// the IP address with the IP address of your server.
//#define SERVER_IP 10, 0, 0, 15
// STEP 3 [REQUIRED for all boards and shields]
// replace this with your wireless network SSID
char ssid[] = "your_network_name";
// STEP 4 [OPTIONAL for all boards and shields]
// If you want to use a static IP (v4) address, uncomment the line below. You can also change the IP.
// If the first line is commented out, the WiFi shield will attempt to get an IP from the DHCP server.
// If you are using a static IP with the ESP8266 then you must also uncomment the SUBNET and GATEWAY.
//#define STATIC_IP_ADDRESS 192,168,1,113
//#define SUBNET_MASK 255,255,255,0 // REQUIRED for ESP8266_WIFI, optional for others
//#define GATEWAY_IP_ADDRESS 0,0,0,0 // REQUIRED for ESP8266_WIFI, optional for others
// STEP 5 [REQUIRED for all boards and shields]
// define your port number here, you will need this to open a TCP connection to your Arduino
#define SERVER_PORT 3030
// STEP 6 [REQUIRED for all boards and shields]
// determine your network security type (OPTION A, B, or C). Option A is the most common, and the
// default.
/*
* OPTION A: WPA / WPA2
*
* WPA is the most common network security type. A passphrase is required to connect to this type.
*
* To enable, leave #define WIFI_WPA_SECURITY uncommented below, set your wpa_passphrase value
* appropriately, and do not uncomment the #define values under options B and C
*/
#define WIFI_WPA_SECURITY
#ifdef WIFI_WPA_SECURITY
char wpa_passphrase[] = "your_wpa_passphrase";
#endif //WIFI_WPA_SECURITY
/*
* OPTION B: WEP
*
* WEP is a less common (and regarded as less safe) security type. A WEP key and its associated
* index are required to connect to this type.
*
* To enable, Uncomment the #define below, set your wep_index and wep_key values appropriately,
* and verify the #define values under options A and C are commented out.
*/
//#define WIFI_WEP_SECURITY
#ifdef WIFI_WEP_SECURITY
//The wep_index below is a zero-indexed value.
//Valid indices are [0-3], even if your router/gateway numbers your keys [1-4].
byte wep_index = 0;
char wep_key[] = "your_wep_key";
#endif //WIFI_WEP_SECURITY
/*
* OPTION C: Open network (no security)
*
* Open networks have no security, can be connected to by any device that knows the ssid, and are
* unsafe.
*
* To enable, uncomment #define WIFI_NO_SECURITY below and verify the #define values
* under options A and B are commented out.
*/
//#define WIFI_NO_SECURITY
/*==============================================================================
* CONFIGURATION ERROR CHECK (don't change anything here)
*============================================================================*/
#ifdef MULTIPLE_WIFI_LIB_INCLUDES
#error "you may not define more than one wifi device type in wifiConfig.h."
#endif
#ifndef WIFI_LIB_INCLUDED
#error "you must define a wifi device type in wifiConfig.h."
#endif
#if ((defined(WIFI_NO_SECURITY) && (defined(WIFI_WEP_SECURITY) || defined(WIFI_WPA_SECURITY))) || (defined(WIFI_WEP_SECURITY) && defined(WIFI_WPA_SECURITY)))
#error "you may not define more than one security type at the same time in wifiConfig.h."
#endif //WIFI_* security define check
#if !(defined(WIFI_NO_SECURITY) || defined(WIFI_WEP_SECURITY) || defined(WIFI_WPA_SECURITY))
#error "you must define a wifi security type in wifiConfig.h."
#endif //WIFI_* security define check
#if (defined(ESP8266_WIFI) && !(defined(WIFI_NO_SECURITY) || (defined(WIFI_WPA_SECURITY))))
#error "you must choose between WIFI_NO_SECURITY and WIFI_WPA_SECURITY"
#endif
/*==============================================================================
* WIFI STREAM (don't change anything here)
*============================================================================*/
#ifdef SERVER_IP
WiFiClientStream stream(IPAddress(SERVER_IP), SERVER_PORT);
#else
WiFiServerStream stream(SERVER_PORT);
#endif
/*==============================================================================
* PIN IGNORE MACROS (don't change anything here)
*============================================================================*/
#if defined(WIFI_101) && !defined(ARDUINO_SAMD_MKR1000)
// ignore SPI pins, pin 5 (reset WiFi101 shield), pin 7 (WiFi handshake) and pin 10 (WiFi SS)
// also don't ignore SS pin if it's not pin 10. Not needed for Arduino MKR1000.
#define IS_IGNORE_PIN(p) ((p) == 10 || (IS_PIN_SPI(p) && (p) != SS) || (p) == 5 || (p) == 7)
#elif defined(ARDUINO_WIFI_SHIELD) && defined(__AVR_ATmega32U4__)
// ignore SPI pins, pin 4 (SS for SD-Card on WiFi-shield), pin 7 (WiFi handshake) and pin 10 (WiFi SS)
// On Leonardo, pin 24 maps to D4 and pin 28 maps to D10
#define IS_IGNORE_PIN(p) ((IS_PIN_SPI(p) || (p) == 4) || (p) == 7 || (p) == 10 || (p) == 24 || (p) == 28)
#elif defined(ARDUINO_WIFI_SHIELD)
// ignore SPI pins, pin 4 (SS for SD-Card on WiFi-shield), pin 7 (WiFi handshake) and pin 10 (WiFi SS)
#define IS_IGNORE_PIN(p) ((IS_PIN_SPI(p) || (p) == 4) || (p) == 7 || (p) == 10)
#elif defined(ESP8266_WIFI) && defined(SERIAL_DEBUG)
#define IS_IGNORE_PIN(p) ((p) == 1)
#endif

View File

@ -0,0 +1,265 @@
FIRMATA 2.5.7 - Aug 19, 2017
[core library]
* Added support for Adafruit nrf52 boards (hathach)
* Added TCP server option to StandardFirmataEthernet (MJPees)
* Added support for STM32-based boards (fpistm)
* Added support for MKRFox1200 (sandeepmistry)
[StandardFirmata & variants]
* Fixed I2C config parameter interpretation (zfields)
* Improve debug output in StandardFirmataEthernet
FIRMATA 2.5.6 - Mar 18, 2017
[core library]
* Fixed string encoder/decoder bug that also affected I2C (Zak Fields)
* Added support for Arduino Primo (chiararuggeri)
* Added unit tests for Firmata string message encoding/decoding
FIRMATA 2.5.5 - Mar 6, 2017
[core library]
* Updated BLEStream for compatibility with CurieBLE v2 (Sandeep Mistry)
* Added support for MKRZero (Sandeep Mistry)
This update also includes a number of changes from an ongoing refactor by
Zak Fields of the Firmata core. These changes don't impact user facing sketches,
they are all internal only. Changes include:
* Split out parser logic into new lib free of Arduino-specific dependencies.
* Add new class to support cross platform marshalling of Firmata procedure calls.
* Split out core constants to separate file.
* Split out core defines to separate file.
* Added firmata namespace to core library classes.
FIRMATA 2.5.4 - Oct 23, 2016
[core library]
* Added Teensy 3.5 and 3.6 to Boards.h
* Assign blinkVersionDisabled in constructor to fix compiler issue in Arduino 1.0.6
[StandardFirmata & variants]
* Only disable PWM when setting pinMode to OUTPUT if pinMode was previously PWM
* Forward declare some functions to fix compiler issues with older IDE versions
FIRMATA 2.5.3 - Jun 18, 2016
[core library]
* Added ESP8266 support (Jens B. & Jacob Rosenthal)
* Added host connection callback (Jens B.)
* Added Wi-Fi TCP client (Jens B.)
* Added BLE transport (BLEStream based on BLESerial by Volta Molda)
* Fixed Arduino Galileo and Edison compile issues
[StandardFirmata & variants]
* Added StandardFirmataBLE (for use with Arduino 101)
* Added ability to choose between Wi-Fi TCP client or server (Jens B.)
* Various updates to StandardFirmataWiFi (Jens B.)
* Increased I2C RX data buffer from 32 to 64 bytes (Rick Waldron)
* Removed StandardFirmataEthernetPlus
* Made StandardFirmataEtherent configurable (to optionally add Plus functionality)
* Improved configuration instructions for StandardFirmataEthernet and StandardFirmataWiFi
FIRMATA 2.5.2 - Feb 15, 2016
[core library]
* Added Wi-Fi transport (Jesse Frush)
* Added support for Arduino MKR1000 (Jesse Frush)
* Moved Serial feature to own class SerialFirmata
* Moved pin config and pin state handling to Firmata.cpp
* Added new method disableBlinkVersion to provide a way to optionally bypass startup blink sequence
[StandardFirmata & variants]
* Added StandardFirmataWiFi (Jesse Frush)
* Added ethernetConfig.h for StandardFirmataEthernet and StandardFirmtaEthernetPlus
* Removed serialUtils.h and using SerialFirmata class instead for Serial feature
FIRMATA 2.5.1 - Dec 26, 2015
[core library]
* Added support for Arduino 101
* Make VERSION_BLINK_PIN optional
* Separate protocol version from firmware version.
Use FIRMATA_PROTOCOL_VERSION_[MAJOR/MINOR/BUGFIX] for protocol and use
FIRMATA_FIRMWARE_VERSION_[MAJOR/MINOR/BUGFIX] for firmware (library version).
[StandardFirmata & variants]
* Added ability to auto-restart I2C transmission by setting bit 6 of byte 3
of the I2C_REQUEST message.
FIRMATA 2.5.0 - Nov 7, 2015
[core library]
* Added Serial feature for interfacing with serial devices via hardware
or software serial. See github.com/firmata/protocol/serial.md for details
* Added ability to set the value of a pin by sending a single value instead
of a port value. See 'set digital pin value' in github.com/firmata/protocol/protocol.md
for details
* Added support for Arduino Zero board
* Added support for Teensy LC board (copied from Teensy Firmata lib)
* Added support for Pinoccio Scout board (Pawel Szymczykowski)
* Lowered minimun sampling interval from 10 to 1 millisecond
* Added new pin mode (PIN_MODE_PULLUP) for setting the INPUT_PULLUP pin mode
* Changed pin mode defines to safer names (old names still included but
deprecated) - see Firmata.h
[StandardFirmata & variants]
* Created new StandardFirmataPlus that implements the Serial feature
Note: The new Serial features is only implemented in the "Plus" versions of
StandardFirmata.
* Created new StandardFirmataEthernetPlus that implements the Serial feature
* Fixed issue where StandardFirmata was not compiling for Intel Galileo boards
* Moved StandardFirmataYun to its own repo (github.com/firmata/StandardFirmataYun)
FIRMATA 2.4.4 - Aug 9, 2015
[core library]
* Added support for chipKIT boards (Brian Schmalz, Rick Anderson and Keith Vogel)
* Added support for ATmega328 boards (previously only ATmega328p was supported)
[StandardFirmata]
* Added StandardFirmataChipKIT for ChipKIT boards (Brian Schmalz, Rick Anderson and Keith Vogel)
* Ensure Serial is ready on Leonardo and other ATMega32u4-based boards
FIRMATA 2.4.3 - Apr 11, 2015
[core library]
* Added debug macros (utility/firmataDebug.h)
* Added Norbert Truchsess' EthernetClientStream lib from the configurable branch
[examples]
* Added StandardFirmataEthernet to enable Firmata over Ethernet
* Minor updates to StandardFirmata and StandardFirmataYun
FIRMATA 2.4.2 - Mar 16, 2015
[core library]
* Add support for Teesy 3.1 (Olivier Louvignes)
FIRMATA 2.4.1 - Feb 7, 2015
[core library]
* Fixed off-by-one bug in setFirmwareNameAndVersion (Brian Schmalz)
[StandardFirmata]
* Prevent analog values from being reported during system reset
FIRMATA 2.4.0 - Dec 21, 2014
Changes from 2.3.6 to 2.4 that may impact existing Firmata client implementations:
* When sending a string from the client application to the board (STRING_DATA) a
static buffer is now used for the incoming string in place of a dynamically allocated
block of memory (see Firmata.cpp lines 181 - 205). In Firmata 2.3.6 and older,
the dynamically allocated block was never freed, causing a memory leak. If your
client library had freed this memory in the string callback method, that code
will break in Firmata 2.4. If the string data needs to persist beyond the string
callback, it should be copied within the string callback.
* As of Firmata 2.4, when digital port reporting or analog pin reporting is enabled,
the value of the port (digital) or pin (analog) is immediately sent back to the client
application. This will likely not have a negative impact on existing client
implementations, but may be unexpected. This feature was added to better support
non-serial streams (such as Ethernet, Wi-Fi, Bluetooth, etc) that may lose
connectivity and need a quick way to get the current state of the pins upon
reestablishing a connection.
[core library]
* Changed sendValueAsTwo7bitBytes, startSysex and endSysex from private to
public methods.
* Added Intel Galileo to Boards.h
* Renamed FirmataSerial to FirmataStream
* Updated to latest Arduino library format
* writePort function in Boards.h now returns 1 (to suppress compiler warning)
* Updated syntax highlighting (keywords.txt)
* Fixed IS_PIN_SPI ifndef condition in boards.h
* Added constants to Firmata.h to reserve configurable firmata features
* Fixed issue where firmwareName was not reported correctly in Windows
* Ensure incoming String via STRING_DATA command is null-terminated
* Fixed memory leak when receiving String via STRING_DATA command
(note this change may break existing code if you were manually deallocating
the incoming string in your string callback function. See code for details)
* Added ability for user to specify a filename when calling setFirmwareNameAndVersion
* Increased input data buffer size from 32 to 64 bytes
[StandardFirmata]
* Updated I2C_READ_CONTINUOUSLY to work with or without slaveRegister (Rick Waldron)
* Added Yun variant of StandardFirmata
* When a digital port is enabled, its value is now immediately sent to the client
* When an analog pin is enabled, its value is now immediately sent to the client
* Changed the way servo pins are mapped to enable use of servos on
a wider range of pins, including analog pins.
* Fixed management of unexpected sized I2C replies (Nahuel Greco)
* Fixed a bug when removing a monitored device with I2C_STOP_Reading (Nahuel Greco)
* Fixed conditional expression in I2C_STOP_READING case
* Changed samplingInterval from type int to type unsigned int
* Shortened error message strings to save a few bytes
[examples]
* Updated FirmataServo example to use new pin mapping technique
* Removed makefiles from examples (because they were not being updated)
* Updated all examples to set current firmware version
FIRMATA 2.3.6 - Jun 18, 2013 (Version included with Arduino core libraries)
[core library]
* Fixed bug introduced in 2.3.5 that broke ability to use Ethernet.
FIRMATA 2.3.5 - May 21, 2013
[core library]
* Added Arduino Due to Boards.h
* Added Teensy 3.0 to Boards.h
* Updated unit tests to use ArduinoUnit v2.0
* Renamed pin13strobe to strobeBlinkPin
* Removed blinkVersion method from begin method for non-serial streams
* Fixed memory leak in setting firmware version (Matthew Murdoch)
* Added unit tests for a few core functions (Matthew Murdoch)
* Added IS_PIN_SPI macro to all board definitions in Board.h (Norbert Truchsess)
FIRMATA 2.3.4 - Feb 11, 2013
[core library]
* Fixed Stream implementation so Firmata can be used with Streams other than
Serial (Norbert Truchsess)
FIRMATA 2.3.3 - Oct 6, 2012
[core library]
* Added write method to expose FirmataSerial.write
* Added Arduino Leonardo to Boards.h
[StandardFirmata]
* Changed all instances of Serial.write to Firmata.write
* Fixed delayMicroseconds(0) bug in readAndReportData
FIRMATA 2.3.0 - 2.3.2
* Removed angle from servo config
* Changed file extensions from .pde to .ino
* Added MEGA2560 to Boards.h
* Added I2C pins to Boards.h
* Modified examples to be compatible with Arduino 0022 and 1.0 or greater
* Removed I2CFirmata example
* Changes to StandardFirmata
* Added I2C support
* Added system reset message to reset all pins to default config on sysex reset
FIRMATA 2.2 (changes prior to Firmata 2.3.0 were not well documented)
* changes undocumented
FIRMATA 2.1
* added support for changing the sampling interval
* added Servo support
FIRMATA 2.0
* changed to 8-bit port-based digital messages to mirror ports from previous 14-bit ports modeled after the standard Arduino board.
* switched order of version message so major version is reported first
FIRMATA 1.0
* switched to MIDI-compatible packet format (though the message interpretation differs)

View File

@ -0,0 +1,90 @@
#######################################
# Syntax Coloring Map For Firmata
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
Firmata KEYWORD1 Firmata
callbackFunction KEYWORD1 callbackFunction
systemResetCallbackFunction KEYWORD1 systemResetCallbackFunction
stringCallbackFunction KEYWORD1 stringCallbackFunction
sysexCallbackFunction KEYWORD1 sysexCallbackFunction
#######################################
# Methods and Functions (KEYWORD2)
#######################################
begin KEYWORD2
printVersion KEYWORD2
blinkVersion KEYWORD2
printFirmwareVersion KEYWORD2
setFirmwareVersion KEYWORD2
setFirmwareNameAndVersion KEYWORD2
available KEYWORD2
processInput KEYWORD2
isParsingMessage KEYWORD2
parse KEYWORD2
sendAnalog KEYWORD2
sendDigital KEYWORD2
sendDigitalPort KEYWORD2
sendString KEYWORD2
sendSysex KEYWORD2
getPinMode KEYWORD2
setPinMode KEYWORD2
getPinState KEYWORD2
setPinState KEYWORD2
attach KEYWORD2
detach KEYWORD2
write KEYWORD2
sendValueAsTwo7bitBytes KEYWORD2
startSysex KEYWORD2
endSysex KEYWORD2
writePort KEYWORD2
readPort KEYWORD2
disableBlinkVersion KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
FIRMATA_MAJOR_VERSION LITERAL1
FIRMATA_MINOR_VERSION LITERAL1
FIRMATA_BUGFIX_VERSION LITERAL1
MAX_DATA_BYTES LITERAL1
DIGITAL_MESSAGE LITERAL1
ANALOG_MESSAGE LITERAL1
REPORT_ANALOG LITERAL1
REPORT_DIGITAL LITERAL1
REPORT_VERSION LITERAL1
SET_PIN_MODE LITERAL1
SET_DIGITAL_PIN_VALUE LITERAL1
SYSTEM_RESET LITERAL1
START_SYSEX LITERAL1
END_SYSEX LITERAL1
REPORT_FIRMWARE LITERAL1
STRING_DATA LITERAL1
PIN_MODE_ANALOG LITERAL1
PIN_MODE_PWM LITERAL1
PIN_MODE_SERVO LITERAL1
PIN_MODE_SHIFT LITERAL1
PIN_MODE_I2C LITERAL1
PIN_MODE_ONEWIRE LITERAL1
PIN_MODE_STEPPER LITERAL1
PIN_MODE_ENCODER LITERAL1
PIN_MODE_SERIAL LITERAL1
PIN_MODE_PULLUP LITERAL1
PIN_MODE_IGNORE LITERAL1
TOTAL_PINS LITERAL1
TOTAL_ANALOG_PINS LITERAL1
TOTAL_DIGITAL_PINS LITERAL1
TOTAL_PIN_MODES LITERAL1
TOTAL_PORTS LITERAL1
ANALOG_PORT LITERAL1
MAX_SERVOS LITERAL1

View File

@ -0,0 +1,9 @@
name=Firmata
version=2.5.8
author=Firmata Developers
maintainer=https://github.com/firmata/arduino
sentence=Enables the communication with computer apps using a standard serial protocol. For all Arduino/Genuino boards.
paragraph=The Firmata library implements the Firmata protocol for communicating with software on the host computer. This allows you to write custom firmware without having to create your own protocol and objects for the programming environment that you are using.
category=Device Control
url=https://github.com/firmata/arduino
architectures=*

194
libraries/Firmata/readme.md Normal file
View File

@ -0,0 +1,194 @@
# Firmata
[![Gitter](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/firmata/arduino?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
Firmata is a protocol for communicating with microcontrollers from software on a host computer. The [protocol](https://github.com/firmata/protocol) can be implemented in firmware on any microcontroller architecture as well as software on any host computer software package. The Arduino repository described here is a Firmata library for Arduino and Arduino-compatible devices. If you would like to contribute to Firmata, please see the [Contributing](#contributing) section below.
# Contents
- [Usage](#usage)
- [Firmata Client Libraries](#firmata-client-libraries)
- [Updating Firmata in the Arduino IDE - Arduino 1.6.4 and higher](#updating-firmata-in-the-arduino-ide---arduino-164-and-higher)
- [Cloning Firmata](#cloning-firmata)
- [Updating Firmata in the Arduino IDE - older versions (<= 1.6.3 or 1.0.x)](#updating-firmata-in-the-arduino-ide---older-versions--163-or-10x)
- [Mac OSX:](#mac-osx)
- [Windows](#windows)
- [Linux](#linux)
- [Using the Source code rather than release archive (only for versions older than Arduino 1.6.3)](#using-the-source-code-rather-than-release-archive-only-for-versions-older-than-arduino-163)
- [Contributing](#contributing)
## Usage
There are two main models of usage of Firmata. In one model, the author of the Arduino sketch uses the various methods provided by the Firmata library to selectively send and receive data between the Arduino device and the software running on the host computer. For example, a user can send analog data to the host using ``` Firmata.sendAnalog(analogPin, analogRead(analogPin)) ``` or send data packed in a string using ``` Firmata.sendString(stringToSend) ```. See File -> Examples -> Firmata -> AnalogFirmata & EchoString respectively for examples.
The second and more common model is to load a general purpose sketch called StandardFirmata (or one of the variants such as StandardFirmataPlus or StandardFirmataEthernet depending on your needs) on the Arduino board and then use the host computer exclusively to interact with the Arduino board. StandardFirmata is located in the Arduino IDE in File -> Examples -> Firmata.
## Firmata Client Libraries
Most of the time you will be interacting with Arduino with a client library on the host computers. Several Firmata client libraries have been implemented in a variety of popular programming languages:
* processing
* [https://github.com/firmata/processing](https://github.com/firmata/processing)
* [http://funnel.cc](http://funnel.cc)
* python
* [https://github.com/MrYsLab/pymata-aio](https://github.com/MrYsLab/pymata-aio)
* [https://github.com/MrYsLab/PyMata]([https://github.com/MrYsLab/PyMata)
* [https://github.com/tino/pyFirmata](https://github.com/tino/pyFirmata)
* [https://github.com/lupeke/python-firmata](https://github.com/lupeke/python-firmata)
* [https://github.com/firmata/pyduino](https://github.com/firmata/pyduino)
* perl
* [https://github.com/ntruchsess/perl-firmata](https://github.com/ntruchsess/perl-firmata)
* [https://github.com/rcaputo/rx-firmata](https://github.com/rcaputo/rx-firmata)
* ruby
* [https://github.com/hardbap/firmata](https://github.com/hardbap/firmata)
* [https://github.com/PlasticLizard/rufinol](https://github.com/PlasticLizard/rufinol)
* [http://funnel.cc](http://funnel.cc)
* clojure
* [https://github.com/nakkaya/clodiuno](https://github.com/nakkaya/clodiuno)
* [https://github.com/peterschwarz/clj-firmata](https://github.com/peterschwarz/clj-firmata)
* javascript
* [https://github.com/firmata/firmata.js](https://github.com/firmata/firmata.js)
* [https://github.com/rwldrn/johnny-five](https://github.com/rwldrn/johnny-five)
* [http://breakoutjs.com](http://breakoutjs.com)
* java
* [https://github.com/kurbatov/firmata4j](https://github.com/kurbatov/firmata4j)
* [https://github.com/4ntoine/Firmata](https://github.com/4ntoine/Firmata)
* [https://github.com/reapzor/FiloFirmata](https://github.com/reapzor/FiloFirmata)
* .NET
* [https://github.com/SolidSoils/Arduino](https://github.com/SolidSoils/Arduino)
* [http://www.acraigie.com/programming/firmatavb/default.html](http://www.acraigie.com/programming/firmatavb/default.html)
* Flash/AS3
* [http://funnel.cc](http://funnel.cc)
* [http://code.google.com/p/as3glue/](http://code.google.com/p/as3glue/)
* PHP
* [https://github.com/ThomasWeinert/carica-firmata]()
* [https://github.com/oasynnoum/phpmake_firmata](https://github.com/oasynnoum/phpmake_firmata)
* Haskell
* [http://hackage.haskell.org/package/hArduino](http://hackage.haskell.org/package/hArduino)
* iOS
* [https://github.com/jacobrosenthal/iosfirmata](https://github.com/jacobrosenthal/iosfirmata)
* Dart
* [https://github.com/nfrancois/firmata](https://github.com/nfrancois/firmata)
* Max/MSP
* [http://www.maxuino.org/](http://www.maxuino.org/)
* Elixir
* [https://github.com/kfatehi/firmata](https://github.com/kfatehi/firmata)
* Modelica
* [https://www.wolfram.com/system-modeler/libraries/model-plug/](https://www.wolfram.com/system-modeler/libraries/model-plug/)
* Go
* [https://github.com/kraman/go-firmata](https://github.com/kraman/go-firmata)
* vvvv
* [https://vvvv.org/blog/arduino-second-service](https://vvvv.org/blog/arduino-second-service)
* openFrameworks
* [http://openframeworks.cc/documentation/communication/ofArduino/](http://openframeworks.cc/documentation/communication/ofArduino/)
* Rust
* [https://github.com/zankich/rust-firmata](https://github.com/zankich/rust-firmata)
Note: The above libraries may support various versions of the Firmata protocol and therefore may not support all features of the latest Firmata spec nor all Arduino and Arduino-compatible boards. Refer to the respective projects for details.
## Updating Firmata in the Arduino IDE - Arduino 1.6.4 and higher
If you want to update to the latest stable version:
1. Open the Arduino IDE and navigate to: `Sketch > Include Library > Manage Libraries`
2. Filter by "Firmata" and click on the "Firmata by Firmata Developers" item in the list of results.
3. Click the `Select version` dropdown and select the most recent version (note you can also install previous versions)
4. Click `Install`.
### Cloning Firmata
If you are contributing to Firmata or otherwise need a version newer than the latest tagged release, you can clone Firmata directly to your Arduino/libraries/ directory (where 3rd party libraries are installed). This only works for Arduino 1.6.4 and higher, for older versions you need to clone into the Arduino application directory (see section below titled "Using the Source code rather than release archive"). Be sure to change the name to Firmata as follows:
```bash
$ git clone git@github.com:firmata/arduino.git ~/Documents/Arduino/libraries/Firmata
```
*Update path above if you're using Windows or Linux or changed the default Arduino directory on OS X*
## Updating Firmata in the Arduino IDE - older versions (<= 1.6.3 or 1.0.x)
Download the latest [release](https://github.com/firmata/arduino/releases/tag/2.5.8) (for Arduino 1.0.x or Arduino 1.5.6 or higher) and replace the existing Firmata folder in your Arduino application. See the instructions below for your platform.
*Note that Arduino 1.5.0 - 1.5.5 are not supported. Please use Arduino 1.5.6 or higher (or Arduino 1.0.5 or 1.0.6).*
### Mac OSX:
The Firmata library is contained within the Arduino package.
1. Navigate to the Arduino application
2. Right click on the application icon and select `Show Package Contents`
3. Navigate to: `/Contents/Resources/Java/libraries/` and replace the existing
`Firmata` folder with latest [Firmata release](https://github.com/firmata/arduino/releases/tag/2.5.8) (note there is a different download
for Arduino 1.0.x vs 1.6.x)
4. Restart the Arduino application and the latest version of Firmata will be available.
*If you are using the Java 7 version of Arduino 1.5.7 or higher, the file path
will differ slightly: `Contents/Java/libraries/Firmata` (no Resources directory).*
### Windows:
1. Navigate to `c:/Program\ Files/arduino-1.x/libraries/` and replace the existing
`Firmata` folder with the latest [Firmata release](https://github.com/firmata/arduino/releases/tag/2.5.8) (note there is a different download
for Arduino 1.0.x vs 1.6.x).
2. Restart the Arduino application and the latest version of Firmata will be available.
*Update the path and Arduino version as necessary*
### Linux:
1. Navigate to `~/arduino-1.x/libraries/` and replace the existing
`Firmata` folder with the latest [Firmata release](https://github.com/firmata/arduino/releases/tag/2.5.8) (note there is a different download
for Arduino 1.0.x vs 1.6.x).
2. Restart the Arduino application and the latest version of Firmata will be available.
*Update the path and Arduino version as necessary*
### Using the Source code rather than release archive (only for versions older than Arduino 1.6.3)
*It is recommended you update to Arduino 1.6.4 or higher if possible, that way you can clone directly into the external Arduino/libraries/ directory which persists between Arduino application updates. Otherwise you will need to move your clone each time you update to a newer version of the Arduino IDE.*
If you're stuck with an older version of the IDE, then follow these keep reading otherwise jump up to the "Cloning Firmata section above".
Clone this repo directly into the core Arduino application libraries directory. If you are using
Arduino 1.5.x or <= 1.6.3, the repo directory structure will not match the Arduino
library format, however it should still compile as long as you are using Arduino 1.5.7
or higher.
You will first need to remove the existing Firmata library, then clone firmata/arduino
into an empty Firmata directory:
```bash
$ rm -r /Applications/Arduino.app/Contents/Resources/Java/libraries/Firmata
$ git clone git@github.com:firmata/arduino.git /Applications/Arduino.app/Contents/Resources/Java/libraries/Firmata
```
*Update paths if you're using Windows or Linux*
To generate properly formatted versions of Firmata (for Arduino 1.0.x and Arduino 1.6.x), run the
`release.sh` script.
## Contributing
If you discover a bug or would like to propose a new feature, please open a new [issue](https://github.com/firmata/arduino/issues?sort=created&state=open). Due to the limited memory of standard Arduino boards we cannot add every requested feature to StandardFirmata. Requests to add new features to StandardFirmata will be evaluated by the Firmata developers. However it is still possible to add new features to other Firmata implementations (Firmata is a protocol whereas StandardFirmata is just one of many possible implementations).
To contribute, fork this repository and create a new topic branch for the bug, feature or other existing issue you are addressing. Submit the pull request against the *master* branch.
If you would like to contribute but don't have a specific bugfix or new feature to contribute, you can take on an existing issue, see issues labeled "pull-request-encouraged". Add a comment to the issue to express your intent to begin work and/or to get any additional information about the issue.
You must thoroughly test your contributed code. In your pull request, describe tests performed to ensure that no existing code is broken and that any changes maintain backwards compatibility with the existing api. Test on multiple Arduino board variants if possible. We hope to enable some form of automated (or at least semi-automated) testing in the future, but for now any tests will need to be executed manually by the contributor and reviewers.
Use [Artistic Style](http://astyle.sourceforge.net/) (astyle) to format your code. Set the following rules for the astyle formatter:
```
style = ""
indent-spaces = 2
indent-classes = true
indent-switches = true
indent-cases = true
indent-col1-comments = true
pad-oper = true
pad-header = true
keep-one-line-statements = true
```
If you happen to use Sublime Text, [this astyle plugin](https://github.com/timonwong/SublimeAStyleFormatter) is helpful. Set the above rules in the user settings file.

View File

@ -0,0 +1,33 @@
#!/bin/sh
# use this script to package Firmata for distribution
# package for Arduino 1.0.x
mkdir -p temp/Firmata
cp -r examples temp/Firmata
cp -r extras temp/Firmata
cp -r utility temp/Firmata
cp *.cpp temp/Firmata
cp *.h temp/Firmata
cp keywords.txt temp/Firmata
cp readme.md temp/Firmata
cd temp
find . -name "*.DS_Store" -type f -delete
zip -r Firmata.zip ./Firmata/
cd ..
mv ./temp/Firmata.zip Arduino-1.0.x-Firmata-2.5.8.zip
#package for Arduino 1.6.x and 1.8.x
cp library.properties temp/Firmata
cd temp/Firmata
mv readme.md ./extras/
mkdir src
mv *.cpp ./src/
mv *.h ./src/
mv utility ./src/
cd ..
find . -name "*.DS_Store" -type f -delete
zip -r Firmata.zip ./Firmata/
cd ..
mv ./temp/Firmata.zip Firmata-2.5.8.zip
rm -r ./temp

View File

@ -0,0 +1,172 @@
/*
* To run this test suite, you must first install the ArduinoUnit library
* to your Arduino/libraries/ directory.
* You can get ArduinoUnit here: https://github.com/mmurdoch/arduinounit
* Download version 2.0 or greater or install it via the Arduino library manager.
*/
#include <ArduinoUnit.h>
#include <Firmata.h>
void setup()
{
Serial.begin(9600);
}
void loop()
{
Test::run();
}
test(beginPrintsVersion)
{
FakeStream stream;
Firmata.begin(stream);
char expected[] = {
REPORT_VERSION,
FIRMATA_PROTOCOL_MAJOR_VERSION,
FIRMATA_PROTOCOL_MINOR_VERSION,
0
};
assertEqual(expected, stream.bytesWritten());
}
void processMessage(const byte *message, size_t length)
{
FakeStream stream;
Firmata.begin(stream);
for (size_t i = 0; i < length; i++) {
stream.nextByte(message[i]);
Firmata.processInput();
}
}
byte _digitalPort;
int _digitalPortValue;
void writeToDigitalPort(byte port, int value)
{
_digitalPort = port;
_digitalPortValue = value;
}
void setupDigitalPort()
{
_digitalPort = 0;
_digitalPortValue = 0;
}
char * _receivedString;
void handleStringCallback(char *str)
{
_receivedString = str;
}
test(processWriteDigital_0)
{
setupDigitalPort();
Firmata.attach(DIGITAL_MESSAGE, writeToDigitalPort);
byte message[] = { DIGITAL_MESSAGE, 0, 0 };
processMessage(message, 3);
assertEqual(0, _digitalPortValue);
}
test(processWriteDigital_127)
{
setupDigitalPort();
Firmata.attach(DIGITAL_MESSAGE, writeToDigitalPort);
byte message[] = { DIGITAL_MESSAGE, 127, 0 };
processMessage(message, 3);
assertEqual(127, _digitalPortValue);
}
test(processWriteDigital_128)
{
setupDigitalPort();
Firmata.attach(DIGITAL_MESSAGE, writeToDigitalPort);
byte message[] = { DIGITAL_MESSAGE, 0, 1 };
processMessage(message, 3);
assertEqual(128, _digitalPortValue);
}
test(processWriteLargestDigitalValue)
{
setupDigitalPort();
Firmata.attach(DIGITAL_MESSAGE, writeToDigitalPort);
byte message[] = { DIGITAL_MESSAGE, 0x7F, 0x7F };
processMessage(message, 3);
// Maximum of 14 bits can be set (B0011111111111111)
assertEqual(0x3FFF, _digitalPortValue);
}
test(defaultDigitalWritePortIsZero)
{
setupDigitalPort();
Firmata.attach(DIGITAL_MESSAGE, writeToDigitalPort);
byte message[] = { DIGITAL_MESSAGE, 0, 0 };
processMessage(message, 3);
assertEqual(0, _digitalPort);
}
test(specifiedDigitalWritePort)
{
setupDigitalPort();
Firmata.attach(DIGITAL_MESSAGE, writeToDigitalPort);
byte message[] = { DIGITAL_MESSAGE + 1, 0, 0 };
processMessage(message, 3);
assertEqual(1, _digitalPort);
}
test(setFirmwareVersionDoesNotLeakMemory)
{
Firmata.setFirmwareVersion(1, 0);
int initialMemory = freeMemory();
Firmata.setFirmwareVersion(1, 0);
assertEqual(0, initialMemory - freeMemory());
}
test(sendStringShouldEncode2BytesPerChar)
{
FakeStream stream;
Firmata.begin(stream);
// reset the buffer because the firmware name string will be sent on Firmata.begin
stream.reset();
char testString[] = "hi!";
Firmata.sendString(testString);
byte expected[] = { START_SYSEX, STRING_DATA, 'h', 0, 'i', 0, '!', 0, END_SYSEX };
int len = stream.bytesWritten().length();
assertEqual(sizeof(expected), len);
for (byte i = 0; i < len; i++) {
assertEqual(expected[i], (byte)stream.bytesWritten().charAt(i));
}
}
test(receivedStringShouldDecodeFrom2BytesPerChar)
{
Firmata.attach(STRING_DATA, handleStringCallback);
byte message[] = { START_SYSEX, STRING_DATA, 'b', 0, 'y', 0, 'e', 0, '!', 0, END_SYSEX };
processMessage(message, 11);
assertEqual("bye!", _receivedString);
}

View File

@ -0,0 +1,13 @@
# Testing Firmata
Tests tests are written using the [ArduinoUnit](https://github.com/mmurdoch/arduinounit) library (version 2.0).
Follow the instructions in the [ArduinoUnit readme](https://github.com/mmurdoch/arduinounit/blob/master/readme.md) to install the library.
Compile and upload the test sketch as you would any other sketch. Then open the
Serial Monitor to view the test results.
If you make changes to Firmata.cpp, run the tests in /test/ to ensure
that your changes have not produced any unexpected errors.
You should also perform manual tests against actual hardware.

View File

@ -0,0 +1,3 @@
/*
* Implementation is in BLEStream.h to avoid linker issues.
*/

View File

@ -0,0 +1,243 @@
/*
BLEStream.h
Based on BLESerial.cpp by Voita Molda
https://github.com/sandeepmistry/arduino-BLEPeripheral/blob/master/examples/serial/BLESerial.h
Last updated April 4th, 2016
*/
#ifndef _BLE_STREAM_H_
#define _BLE_STREAM_H_
#include <Arduino.h>
#if defined(_VARIANT_ARDUINO_101_X_)
#include <CurieBLE.h>
#define _MAX_ATTR_DATA_LEN_ BLE_MAX_ATTR_DATA_LEN
#else
#include <BLEPeripheral.h>
#define _MAX_ATTR_DATA_LEN_ BLE_ATTRIBUTE_MAX_VALUE_LENGTH
#endif
#define BLESTREAM_TXBUFFER_FLUSH_INTERVAL 80
#define BLESTREAM_MIN_FLUSH_INTERVAL 8 // minimum interval for flushing the TX buffer
// #define BLE_SERIAL_DEBUG
class BLEStream : public BLEPeripheral, public Stream
{
public:
BLEStream(unsigned char req = 0, unsigned char rdy = 0, unsigned char rst = 0);
void begin(...);
bool poll();
void end();
void setFlushInterval(int);
virtual int available(void);
virtual int peek(void);
virtual int read(void);
virtual void flush(void);
virtual size_t write(uint8_t byte);
using Print::write;
virtual operator bool();
private:
bool _connected;
unsigned long _flushed;
int _flushInterval;
static BLEStream* _instance;
size_t _rxHead;
size_t _rxTail;
size_t _rxCount() const;
unsigned char _rxBuffer[256];
size_t _txCount;
unsigned char _txBuffer[_MAX_ATTR_DATA_LEN_];
BLEService _uartService = BLEService("6E400001-B5A3-F393-E0A9-E50E24DCCA9E");
BLEDescriptor _uartNameDescriptor = BLEDescriptor("2901", "UART");
BLECharacteristic _rxCharacteristic = BLECharacteristic("6E400002-B5A3-F393-E0A9-E50E24DCCA9E", BLEWriteWithoutResponse, _MAX_ATTR_DATA_LEN_);
BLEDescriptor _rxNameDescriptor = BLEDescriptor("2901", "RX - Receive Data (Write)");
BLECharacteristic _txCharacteristic = BLECharacteristic("6E400003-B5A3-F393-E0A9-E50E24DCCA9E", BLENotify, _MAX_ATTR_DATA_LEN_);
BLEDescriptor _txNameDescriptor = BLEDescriptor("2901", "TX - Transfer Data (Notify)");
void _received(const unsigned char* data, size_t size);
static void _received(BLECentral& /*central*/, BLECharacteristic& rxCharacteristic);
};
/*
* BLEStream.cpp
* Copied here as a hack to avoid having to install the BLEPeripheral libarary even if it's
* not needed.
*/
BLEStream* BLEStream::_instance = NULL;
BLEStream::BLEStream(unsigned char req, unsigned char rdy, unsigned char rst) :
#if defined(_VARIANT_ARDUINO_101_X_)
BLEPeripheral()
#else
BLEPeripheral(req, rdy, rst)
#endif
{
this->_txCount = 0;
this->_rxHead = this->_rxTail = 0;
this->_flushed = 0;
this->_flushInterval = BLESTREAM_TXBUFFER_FLUSH_INTERVAL;
BLEStream::_instance = this;
addAttribute(this->_uartService);
addAttribute(this->_uartNameDescriptor);
setAdvertisedServiceUuid(this->_uartService.uuid());
addAttribute(this->_rxCharacteristic);
addAttribute(this->_rxNameDescriptor);
this->_rxCharacteristic.setEventHandler(BLEWritten, BLEStream::_received);
addAttribute(this->_txCharacteristic);
addAttribute(this->_txNameDescriptor);
}
void BLEStream::begin(...)
{
BLEPeripheral::begin();
#ifdef BLE_SERIAL_DEBUG
Serial.println(F("BLEStream::begin()"));
#endif
}
bool BLEStream::poll()
{
// BLEPeripheral::poll is called each time connected() is called
this->_connected = BLEPeripheral::connected();
if (millis() > this->_flushed + this->_flushInterval) {
flush();
}
return this->_connected;
}
void BLEStream::end()
{
this->_rxCharacteristic.setEventHandler(BLEWritten, (void(*)(BLECentral&, BLECharacteristic&))NULL);
this->_rxHead = this->_rxTail = 0;
flush();
BLEPeripheral::disconnect();
}
int BLEStream::available(void)
{
// BLEPeripheral::poll only calls delay(1) in CurieBLE so skipping it here to avoid the delay
#ifndef _VARIANT_ARDUINO_101_X_
// TODO Need to do more testing to determine if all of these calls to BLEPeripheral::poll are
// actually necessary. Seems to run fine without them, but only minimal testing so far.
BLEPeripheral::poll();
#endif
int retval = (this->_rxHead - this->_rxTail + sizeof(this->_rxBuffer)) % sizeof(this->_rxBuffer);
#ifdef BLE_SERIAL_DEBUG
if (retval > 0) {
Serial.print(F("BLEStream::available() = "));
Serial.println(retval);
}
#endif
return retval;
}
int BLEStream::peek(void)
{
#ifndef _VARIANT_ARDUINO_101_X_
BLEPeripheral::poll();
#endif
if (this->_rxTail == this->_rxHead) return -1;
uint8_t byte = this->_rxBuffer[this->_rxTail];
#ifdef BLE_SERIAL_DEBUG
Serial.print(F("BLEStream::peek() = 0x"));
Serial.println(byte, HEX);
#endif
return byte;
}
int BLEStream::read(void)
{
#ifndef _VARIANT_ARDUINO_101_X_
BLEPeripheral::poll();
#endif
if (this->_rxTail == this->_rxHead) return -1;
this->_rxTail = (this->_rxTail + 1) % sizeof(this->_rxBuffer);
uint8_t byte = this->_rxBuffer[this->_rxTail];
#ifdef BLE_SERIAL_DEBUG
Serial.print(F("BLEStream::read() = 0x"));
Serial.println(byte, HEX);
#endif
return byte;
}
void BLEStream::flush(void)
{
if (this->_txCount == 0) return;
#ifndef _VARIANT_ARDUINO_101_X_
// ensure there are available packets before sending
while(!this->_txCharacteristic.canNotify()) {
BLEPeripheral::poll();
}
#endif
this->_txCharacteristic.setValue(this->_txBuffer, this->_txCount);
this->_flushed = millis();
this->_txCount = 0;
#ifdef BLE_SERIAL_DEBUG
Serial.println(F("BLEStream::flush()"));
#endif
}
size_t BLEStream::write(uint8_t byte)
{
#ifndef _VARIANT_ARDUINO_101_X_
BLEPeripheral::poll();
#endif
if (this->_txCharacteristic.subscribed() == false) return 0;
this->_txBuffer[this->_txCount++] = byte;
if (this->_txCount == sizeof(this->_txBuffer)) flush();
#ifdef BLE_SERIAL_DEBUG
Serial.print(F("BLEStream::write( 0x"));
Serial.print(byte, HEX);
Serial.println(F(") = 1"));
#endif
return 1;
}
BLEStream::operator bool()
{
bool retval = this->_connected = BLEPeripheral::connected();
#ifdef BLE_SERIAL_DEBUG
Serial.print(F("BLEStream::operator bool() = "));
Serial.println(retval);
#endif
return retval;
}
void BLEStream::setFlushInterval(int interval)
{
if (interval > BLESTREAM_MIN_FLUSH_INTERVAL) {
this->_flushInterval = interval;
}
}
void BLEStream::_received(const unsigned char* data, size_t size)
{
for (size_t i = 0; i < size; i++) {
this->_rxHead = (this->_rxHead + 1) % sizeof(this->_rxBuffer);
this->_rxBuffer[this->_rxHead] = data[i];
}
#ifdef BLE_SERIAL_DEBUG
Serial.print(F("BLEStream::received("));
for (int i = 0; i < size; i++) Serial.print(data[i], HEX);
Serial.println(F(")"));
#endif
}
void BLEStream::_received(BLECentral& /*central*/, BLECharacteristic& rxCharacteristic)
{
BLEStream::_instance->_received(rxCharacteristic.value(), rxCharacteristic.valueLength());
}
#endif // _BLE_STREAM_H_

Some files were not shown because too many files have changed in this diff Show More